

Fourfields: Stage 1&2 Ground Investigation Interpretative Report

Technical Department, Doc. 2015.06.09_NorthConnect_TEC_REP_FourFields GI1-2 Report_Rev03 Last approval: 2015.06.09

Date:	By:	Control:	Approved by:
2015.06.09	R.Blanchfield	K.Carmouche	F.Henderson

Issue & Revision History

Revision:	Date:	By:	Control:	Approved:	Description:
R 01	Dec 2014	R.Blanchfield	F.Henderson	Ø.Ottersen	Draft for comments
R 02	Dec 2014	R.Blanchfield	F.Henderson	Ø.Ottersen	Final issue
R 03	Jun 2015	R.Blanchfield	K.Carmouche	F.Henderson	3 rd Party Tech. Review
					,

Contents

1	Purpose	
2	Objectives	4
3	Site, Proposed Scheme & Desk Study Findings	4
4	Method of Investigation	10
5	Ground & Groundwater Conditions	15
6	Laboratory Testing Results	19
7	Geotechnical Assessment, Discussion & Conclusions	22
Ref	ferences	29

NorthConnect: Fourfields Stage 1&2 Ground Investigation Interpretative Report

1 Purpose

This document sets out the results of the Stage 1&2 ground investigations carried out on the proposed Fourfields converter station and AC cable route site near to Peterhead, which is the proposed UK landing point for the HVDC interconnector. Comprising trial pit observation, borehole drilling, sampling and various in-situ and laboratory testing, the basic purpose of the investigations were to inform the EIA and Planning proposals stage of the UK onshore works permitting process.

2 **Objectives**

The ground investigation and interpretative reporting has been carried out with the following objectives for the NorthConnect project:

- To carry out investigation for the soil characteristics and testing parameters which, defined in collaboration with the NorthConnect team, were judged to be necessary and sufficient to inform the EIA and Planning proposal work;
- To plan manage and undertake the site investigation, sampling and soil testing;
- To provide NorthConnect with results and interpretation to include commentary on the soil characteristics and testing in the context of both the current proposed plans for the converter station, and its future, post-consent design development requirements; and
- To input the necessary geotechnical information and proposals into the "consent design" which will be described in the Environmental Statement and other associated documents for the public consultation and Planning application.

3 Site, Proposed Scheme & Desk Study Findings

Location & General Description

The Fourfields site is located approximately 1.2km south west of Boddam and Stirling Village on the Buchan Coast, to the south of the port town of Perterhead, Aberdeenshire. A site location map is shown in Figure 1.

Figure 1: Area map with proposed Fourfields site and AC cable route location

The site is bordered to the east by the Stirling Hill Quarry, to the north by a secondary quarry access road and a trout pond belonging to a nearby property known as Highfield, and to the south and west by open arable land. The A90 trunk road runs north east to south west approximately 600m to the east of the site and a minor road, Lendrum Terrace runs east-west approximately 400m to the north. Highfield is the closest property, with others located slightly further away on Lendrum Terrace to the north of the quarry. An MoD aircraft radar station, RAF Buchan Ness, is located on top of the hill approximately 700m to the south west.

The area around the site and Stirling Hill is in a generally elevated position, however, the site itself occupies a dip in the landscape with the ground profile sloping upwards moderately steeply through the quarry to the east and the fields to the south and west. The ground is generally flat immediately to the north and across the northern third of the proposed converter station footprint. It then slopes gently upwards north east to south west over the remainder of the footprint, and thereafter slightly more steeply up the field to the south and west.

The proposed cable track routes up the hill to the west of Fourfields and turns north to follow the crest of the hill along the west side of the track to the property Highfield, and then the metalled lane past the derelict Denend Farm. It then crosses to the east side of the lane into SSE Generation property, to follow the lane north into the substation connection site.

Designations

The site itself has no national environmental designations, however, the Bullers of Buchan Coast Site of Special Scientific Interest (SSSI) and Bullers of Buchan Geological Conservation Review Site (GCRS) is located approximately 700m East and South of the Fourfields site, its main geological features being the Coastal Geomorphology of Scotland

and Marine cliff. The Hill of Longhaven SSSI is located approximately 2.8km to the West of the Fourfields and AC cable route sites, its features being Quaternary geology and geomorphology. The Den of Boddam (Flint mining complex) Scheduled Monument archaeological heritage site is located approximately 400m to the west.

In terms of local designations, the Fourfields site, access road and most of the AC cable route is located within the Stirling Hill-Dudwick-Skelmuir Hill LNCS and previous Stirling Hill-Dudwick-Longhaven Coast SESA. The coastal SESA's are both noted for the same geomorphological reasons as the SSSI and GCRS above. The Stirling Hill-Dudwick-Skelmuir Hill LNCS is noted for the pre-glacial Buchan Gravels Formation which blankets the ridge. Related deposits also occur at nearby Windyhills, from which the Stirling Hill-Dudwick-Skelmuir Hill LNCS differs by being rich in flints, and these are under active research. The LNCS is considered to be of a unique nature in a Scottish context and also includes the Den of Boddam glacial meltwater channel (Aberdeenshire Council, 2013).

Proposed Scheme

The NorthConnect scheme is a joint venture project with the aim to plan, build and operate a HVDC power interconnector between Norway and the United Kingdom. The interconnector system involves DC subsea cables and AC/DC converter stations at either end of the link to connect into the closest national grid substations. The proposals for the Fourfields site include the UK converter station equipment, buildings and associated infrastructure, and also the underground AC and DC cable route approaches to the converter station. Only the AC cable route is included in the first onshore works EIA and Planning application.

NorthConnect have an outline design for the converter station site, shown in Appendix A, which has been the product of electrical, civil, environmental and landscape layout design undertaken over the course of the EIA process. The converter station will comprise a main building, steel framed and clad, approximately 190m long by 58m wide and 26.6m high at the crest of the roof. This will house the majority of the converter equipment except for the transformers, which will be housed in casings within two outdoor pens. The rest of the site footprint will comprise smaller buildings for ancilliary equipment, such as switchgear, cooling plant, fire suppression systems, and hardstanding for approach roads, services and site drainage. There are also elements of both hard and soft landscaping incorporated into the design, with substantial earth mounding proposed around the site for landscape and visual screening purposes.

Foundations will be as standard for a large, steel-framed building. The converter "halls" will require a reinforced concrete platform foundation / flooring, with depth and reinforcement increased in areas to support the heavier electrical equipment. Although certain cable and service ducting will be required within the flooring, the equipment is located substantially above floor level, so there are no large "basement" require mass reinforced concrete pad or block footings appropriately sized. Where rockhead is encountered at or above foundation level, which is likely in this location over much of the building footprint, then smaller optimised rock founding options become available. The nature of electrical installations such as this, usually divide works into two different contracts: one for the civil "enabling" works including wider area infrastructure, site layout and groundworks up to "working platform" level; and then buildings, including foundations, will be constructed as part of the main electrical works and HVDC system packages. Having the converter station, and hence the working platform, all on one level is preferable for ease of operation and maintenance, however, the stations

can also potentially be two tiered at different levels depending upon landform, rock depth or other engineering or environmental constraints. NorthConnect have opted for a single tier design.

The cable route to the substation will comprise two AC circuits of three cables per circuit. Each circuit will be installed in a separate 1.5m wide trench set 7m apart, with the minimum depth to the top of the cables being 1200mm and total engineered depth including bedding material being approximately 1.5m. Deeper sections may be required at certain points to account for localized landform and two buried jointing bays will also be required along the cable route.

Previous Work

This study forms part of the examination which NorthConnect have undertaken of the Fourfields site specifically, however, NorthConnect previously commissioned walkover assessments and interpretation of another potential converter station site located 600m to the north west, and also of the potential cable landing point located 700m south east of Fourfields.

Both of these studies examined BGS area mapping of drift and solid geology, among other area-wide information, from which general conclusions and geological characteristics can also be drawn for the Fourfields site. The results of these studies can be found in:

- "North Collielaw & Denend, Peterhead, Desk Study", ERS (Nov-13)¹
- "NorthConnect Landfall Option Study", Technip (Dec-13)²

A review and summary of relevant geological, hydrological and hydrogeological information to Fourfields in these reports is given in the following sections.

Geology

The solid and drift geology for the site is derived from the sources listed under Previous Work above. A review of the existing site data contained in these sources was undertaken.

Extracts from the 1:50,000 solid and drift geology BGS maps are reproduced in Appendix B.

Drift Geology

The BGS map indicates that most of the Peterhead area heading southward is mantled by glacial drift of Pleistocene Age, fluvioglacial and glacial sand and gravel and glacio-lacustrine deposits. Recent drift overlay includes coastal deposits of a very thin to absent alluvium associated with watercourses on the coast resulting from erosion. Over much of the inland area, glacial deposit comprises diamicton (otherwise known as boulder clay) of mainly red Hatton Till formation. These Hatton Till formation deposits are frequently very variable and fissured in nature, with sediment type varying rapidly horizontally and vertically. In general, there appears to be increase in thickness towards the north and east of the site location where the inferred form of the bedrock is highly irregular.

Solid Geology

The BGS maps also indicate the underlying bedrock of the area is dominated by Peterhead Pluton granite which creates a ragged coastline, highly sculpted/fractured cliffs and sea stacks. In general the granite, understood to belong to pre-Lower Old Red Sandstone Age, is a coarsely crystalline red rock, resting un-conformably on the old platform of slates and schists. The strata consist mainly of conglomerates and sandstones, associated with lenticular bands of andesite indicating contemporaneous volcanic action.

Anticipated Geology

The generalised soil conditions anticipated at the site are summarised in Table 1 below.

Age	Geological Unit	Depth (mbgl)	Lithology
Drift	Lake Alluvial	0.2 to 4m	Flood-plain, river-terrace and alluvial fan
(Recent and	(undifferentiated)		deposits of clay, silt, sand and gravel
Pleistocene)	Hatton Till Formation	Typically 2m,	Unsorted glacial deposits of clay, sandy
	(Diamicton)	locally up to 10m	clay, sand with pebbles and boulders
Solid	Red Peterhead	Typically 1 to	Conglomerate, with subsidiary horizons
(Silurian)	Pluton granite	10m	of sandstone and clay

Table 1: Anticipated geology at the proposed site

Hydrology & Hydrogeology

The hydrology and hydrogeology for the site can be assessed in general terms from the sources listed under Previous Work above, and from observation at the site in trial pits and boreholes.

<u>Hydrology</u>

There are no classified water courses in the vicinity of the Fourfields site, however, the closest unclassified surface water features consist of:

- An unnamed burn flowing north along the eastern boundary of the site;
- A field drain flowing east along part of the northern boundary to meet the above burn at the north east corner of Fourfields;
- A large fish pond known as Braeside Trout Fishery beyond the northern boundary of the site; and
- Settlement ponds for the quarry, also beyond the northern boundary of the site on the eastern side of the above burn.

The eastern boundary of the site is designated as medium risk of flooding by SEPA along the line of the eastern field drain / ditch described above.

Surface water features along the AC cable route consist of:

- An unnamed burn flowing north east from the Den of Boddam Dam which crosses the cable route and unnamed road leading north from Lendrum Terrace; and
- Another unnamed burn, flowing east across the unnamed road, close to the point at which the cable route is proposed to cross the road just south of the property known as Hjaltland.

Hydrogeology

The interactive map of the 2008-2015 River Basin Management Plan (RBMP) published by SEPA shows that the groundwater body in the area is part of the "Peterhead bedrock and localised sand and gravel aquifer". However, from other evidence, the granite bedrock geology beneath the site appears to be typically impermeable and a poor aquifer for the following reasons. The BGS and SEPA classify the regional bedrock aquifer to be of low productivity (0.1-1 I/s) characterised by fracture flow processes within an unnamed igneous intrusion of late Silurian to early Devonian age. These rocks have negligible intergranular porosity and, therefore, can store groundwater only within fractures. All groundwater flow is through fractures, along bedding planes, joints or fault lines. Small amounts of groundwater are likely in the near surface weathered zones and secondary fractures, and there are also rare springs.

Similarly within the drift strata, SEPA state that the Hatton Till Formation deposits are likely to have sand and gravel lenses which may be of local importance to private water supplies, however, at the site itself no information regarding major aquifers or vulnerability has been identified, and there are no private water supply wells recorded within 250m of the site. Hence, there is not considered likely to be a significant drift aquifer in this area.

Despite the above desk findings, the position of the site within the landform at the base of a 'dip' or shallow valley oriented northwards, opens the possibility of localised groundwater flows within the drift deposits, providing the underlying Peterhead Pluton granite surface follows a similar northerly down-slope profile. If there is any groundwater flow at the site, it may be in hydraulic continuity with the local surface water ditches and drains. The fish pond beyond the northern boundary of the site has no visible inflow watercourse but does have an overflow pipe which falls into the above ditches a little to the north of the site. It is possible, therefore, that the pond may be spring or groundwater fed. It should be noted that access could not be gained to make a thorough investigation around the edges of the Trout Pond.

Given the above findings from the desk study information, a significant focus of the physical ground investigation was concerned with establishing potential risk to these various local water bodies. Hence, in addition to the topographical survey information available, investigation and testing locations were targeted at the northern and eastern boundaries between the site and the surrounding water bodies.

Historic Mining Activity

From historic maps of the area, the proposed site is adjacent to areas where quarrying has formerly taken place. Therefore, there is a possibility that the development may encounter contaminated spoil and waste from quarrying operations and unmarked, infilled pits.

From site walkover surveys and observations as part of the ground investigation, there is surface evidence of old quarry workings around Stirling Hill beyond the south east boundary of the site, such as: pits; exposed faces; ponds; and other uneven ground features which appear man-made. However, these do not seem to extend beyond the present quarry boundary, formed by the burn, into NorthConnect's proposed Fourfields site area itself. There is no evidence in the archaeological records including historical mapping of the area that quarry works extended into Fourfields. There were no crop marks identified during site visits over two years, which might be an indication of such subsurface features. Contamination testing is undertaken as part of this study.

4 Method of Investigation

The Stage 1 & 2 ground investigations were undertaken for NorthConnect in March and October 2014 respectively. The Stage 1 investigation comprising trial pits and contamination testing at Fourfields was undertaken pre-environmental scoping, in order that basic data could be gathered to allow stakeholders to comment and set out their requirements for the main EIA work over 2014. The larger Stage 2 investigation comprising boreholes and other in-situ and laboratory testing at Fourfields, and also trial pits along the AC cable route to the substation, was undertaken during the main EIA work. This was targeted at deriving information around the stakeholder scoping concerns and engineering requirements of the consent design proposals. It should be noted that the ground investigation so far has been limited to the level of definition required for consent design, and further detailed engineering design will probably require more detailed ground investigations as the project develops further.

The methods of study for the Stage 1 & 2 ground investigations were developed in discussion with NorthConnect, and are described below.

General

The scope of the fieldwork was undertaken in general accordance with Eurocode 7 / BS EN $1997-2:(2007)^3$ and its related technical standards together with the relevant sections of BS5930:(1999)⁴ and BS 10175:(2011)⁵.

The co-ordinates and reduced levels were surveyed by the contractor to National Grid and Ordnance Datum. The borehole, trial pit and resistivity test positions are shown on the site plans given in Appendix C for Stage 1 and Appendix D for Stage 2.

Representative disturbed samples of all materials encountered were obtained and placed in sealed containers. Geotechnical samples were transported to storeroom for temporary retention prior to testing at an accredited laboratory, whilst geoenvironmental Stage 1 samples were transported from site directly to an accredited laboratory.

The soil and rock samples recovered from the boreholes and trial pits were described by a Geotechnical Engineer in accordance with BS EN ISO 14688-1:(2002)⁶ and BS EN ISO 14688-2:(2004)⁷. The detailed description of all strata encountered, groundwater conditions and the position and type of samples taken are included on the borehole and trial pit logs contained in Appendices C and D.

Trial Pits

As part of the Stage 1 GI categorisation process, on 12th March 2014, three trial pits were dug across the Fourfields site using the back-actor of a JCB-3CX excavator. Soil was removed in layers by the excavator driver, under instruction of the geotechnical engineer, so that the relevant observations and measurements could be made at various depths, and at any visible changes in ground characteristics. The physical soil characteristics were

documented from site observation, and several samples taken and sent for analysis in order to gain detailed understanding of physical and chemical characteristics. The depth of the pits was extended until either solid rock was encountered, or until side-wall stability rendered further excavation impossible. The location of the pits was chosen at the consent design stage simply to establish the ground, rock and groundwater conditions at the two extents of the site and on the cable approach route for scoping purposes. The location of the pits is shown in Appendix C and a summary of their locations is as follows:

<u>Trial Pit 1 (TP01) (E412054:N841468):</u> Located at the north east corner of the proposed converter station footprint. At 61.92 metres above (sea level) ordnance datum (mAOD), it is at the lowest point of the current ground surface profile within the proposed Fourfields site area, and also close to the current surface water features of the field ditches / drains and the Braeside Trout Fishery on the neighbouring land.

<u>Trial Pit 2 (TP02) (E411924:N841273):</u> Located at the south west corner of the proposed converter station footprint. At 74.24 mAOD, it is at the highest point of the current ground surface profile within the proposed Fourfields site area.

<u>Trial Pit 3 (TP03) (E411800:N841485):</u> Located at the north west corner of the Fourfields area, a few hundred metres west of the proposed converter station location, but on the proposed AC cable tracks down into the site. At 76.40 mAOD, it is up the hill to the west of the proposed site area close to the property known as Highfield.

As part of the Stage 2 GI categorisation process, on 7th October 2014, four further trial pits were dug along the AC cable route to the substation. These trial pits and testing were for the purpose of determining the ground's physical properties and basic soil classification for cable installation. The methodology was the same as described above for the Stage 1 pits. Their locations are shown in Appendix D and summarised as follows:

<u>Trial Pit 4 (TP04) (E411752:N841685)</u>: Located at the western side of the Highfield access track, to the north of where the cable route exits Fourfields, and at 74.09 mAOD still on the crest of the hill to the north west of Fourfields.

<u>Trial Pit 5 (TP05) (E411748:N841908):</u> Located further north at the western side of the unnamed road, halfway down the hill (60.94 mAOD) towards the unnamed burn which runs northeasterly from the Den of Boddam Dam past the derelict Denend Farm.

<u>Trial Pit 6 (TP06) (E411823:N842219):</u> Located at 50.63 mAOD to the western side of the unclassified road in the north east corner of the field beyond Denend Farm, close to the property known as Hjaltland and where the cable route will cross the unnamed road into the field south of the substation location.

<u>Trial Pit 7 (TP07) (E411734:N842095)</u>: Located at 53.96 mAOD in the south east corner of the field just beyond the derelict Denend Farm buildings' access track.

Boreholes

The Stage 2 investigation included the drilling of three boreholes on the Fourfields site. The principally aim was to establishing rock depth and groundwater characteristics over the northern portion of the converter site, but also to gain further information on soil and rock characteristics. One further borehole was inserted on the AC cable route to try to establish rock depth. The borehole locations are also shown in Appendix D.

<u>Borehole 1 (BH01) (E412061:N841458):</u> Located in the north-east corner of the Fourfields site at a ground elevation of 62.18 mAOD. Due to heavy rain and standing water in that corner of the field, it had to be sited approximately 15m in from the fence-line.

<u>Borehole 2 (BH02) (E411969:N841483):</u> Located at 64.72 mAOD ground elevation, adjacent to the northern boundary of the Fourfield site at the approximate mid-point of the northern edge of the proposed converter station platform area and close to the small field drain/ditch which runs down to the north-east corner of the Fourfields.

<u>Borehole 3 (BH03) (E412094:N841338):</u> Located at 65.54 mAOD ground elevation, adjacent to the eastern boundary at the approximate mid-point of the long edge of the converter station platform area and close the small field drain / ditch which runs along the eastern boundary of the Fourfields.

<u>Borehole 4 (BH04) (E411766:N842128):</u> Located on the AC cable route at 55.35 mAOD ground elevation, at the western side of the unnamed road between the derelict Denend farm and the property known as Hjaltland.

The boreholes were were formed to depths between 2.05 mbgl and 3.10 mbgl employing dynamic cable percussive techniques together with 127mm diameter temporary steel casings.

One undisturbed 100mm diameter tube sample was obtained during the boring operations where suitable cohesive material was encountered. Standard Penetration Tests (SPT) were carried out using either a split spoon sampler or a solid 60° cone (CPT). The results of these tests are given as a Standard Penetration "N" value or as a blow count for a given penetration at the appropriate position on the borehole logs, where the use of either the sampler or cone is also recorded.

Three boreholes (Nos. BH01 to BH03) were continued by rotary percussive open-hole and coring techniques to depths between 5.00 mbgl and 12.00 mbgl. The boreholes were sunk in order to obtain rock core samples to provide geotechnical information for foundation. Unfortunately, core recovery was low but this is not uncommon in weathered granites which predominated around the borehole locations close to the field drains / ditches.

Photographs of the rock core recovered are provided in Appendix D.

Installation / Instrumentation

Upon completion, BH01 to BH03 were installed with 50mm diameter HDPE (piezometer) pipe for permeability testing and future monitoring of gas or groundwater level if required. This comprises a geosock and 2-5mm washed gravel over the slotted section of the pipe, which allows groundwater from lower levels to enter the pipe whilst keeping it clear from blockages. It also then comprises cement bentonite grout around the plain section at the top of the pipe, which seals it from infiltration by standing or percolating surface water in the upper reaches of the soil. Each installation was capped with a bolted metal upstand to prevent debris entering and marked with a large, coloured stake so that agricultural vehicles are aware of their locations.

Figure 2: Borehole Groundwater Installation (Piezometer)

Logging, Sampling & In-Situ Testing

In all trial pits and boreholes, the stratigraphy and depths in metres below ground level (mbgl) of ground and groundwater conditions were logged on standard Log sheets, which are also presented in Appendices C and D. An initial soil description was also recorded of each soil type, including the observed density description. Properties were to be later confirmed and refined by further laboratory testing of disturbed and undisturbed samples. The following samples and measurements were undertaken where possible at each trial pit or borehole sample depth:

For physical soil characteristics or index properties:

- Disturbed 10kg bulk bag samples
- Disturbed 1kg tub samples
- Undisturbed block samples in Stage 1 trial pits
- Undisturbed U100 samples from borehole cores
- Standard penetration test (SPT's)

For various chemical (contamination) soil testing in Stage 1 trial pits:

- 1kg glass jar samples
- 60g glass pot samples

At boreholes BH02 and BH03, permeability tests were carried out within the installations by an engineer with a submersible pump, dipmeter and water bowser to give an understanding of the permeability of the materials surrounding the response zone. Falling head tests were carried out in accordance with $BS5930^4 + A2\ 2010$ and the results presented in Appendix D of this report. A falling head test is carried out by adding water to a borehole and measuring the rate of flow into the response zone.

Resistivity testing was also carried out across the Fourfields site over the proposed converter station footprint. This testing is to determine the electrical conductivity properties of the soil, in order that adequate earthing can be designed for electrical equipment, and also for the building, which is designed as a Faraday Cage to minimise electro-magnetic field interference outside the building skin. Locations of the centre of each test are shown on the location plan in Appendix D. The tests were carried out in accordance with the IEEE Standard No.81 (IEEE 1983)⁸ guidance, as specified by NorthConnect's HVDC electrical consultant (Mott Macdonald 2014)⁹. The results are presented in Appendix D of this report. The data is to be used by the electrical consultants in checking earthing potential for electrical consent design and layout of the converter station. The results will not be discussed further within this geotechnical report.

Laboratory Testing

The samples taken were transported to certificated soil testing laboratories, where the following tests were undertaken to UKAS accredited standards and BS $10175 (2001)^5$ for laboratory standards.

The geotechnical tests listed below were carried out in accordance with BS 1377¹⁰ procedures and the results are given on the summary sheets with individual test plots presented in Appendices C and D of this report.

B.S. TEST NO.	DESCRIPTION
Part 2:3	Moisture Content
Part 2:4,5	Atterberg Limits
Part 2: 7.2	Bulk Density : Linear Measurement
Part 2:8.2 & 8.3	Particle Density
Part 2:9	Particle Size Distribution
Part 4: 3.5	Compaction Test
Part 4: 5.4	Determination of the MCV of a sample of soil at its natural moisture content
Part 4: 5.5	Determination of the MCV/moisture content relation of a soil
Part 5:3	One Dimensional Consolidation test results
Part 7:9	Determination of Multi Stage Undrained Shear Strength in Triaxial Compression
ASTM D7012-1011	Unconfined Compressive Strength

Table 2: Geotechnical tests

And for the samples from Stage 1 trial pits, the following contamination testing suites were carried out:

- Metals;
- Inorganics;
- Aromatic compounds;
- Polycyclic aromatic hydrocarbons (PAH);
- Chlorinated hydrocarbons; and
- Pesticides.

The contamination tests each measured either the *Detected Concentration* level of a particular chemical or compound, or defaulted to a deminimus *Traceability Limit*, i.e. the lowest concentration at which a contaminant can be detected by the testing equipment. From these results a human health risk assessment was carried out in accordance with CLEA (Contaminated Land Exposure Assessment)¹² derived generic assessment criteria.

5 Ground & Groundwater Conditions

Lithology & Stratigraphy

Through the trial pit and borehole observations, logging and the later laboratory soil classification and PSD testing, the soil types encountered across the study site can be identified and categorised into the approximate stratigraphy shown in Table 3. The sample descriptions are mapped to the appropriate BGS lithology description and then also assigned a simplified geotechnical grouping for engineering purposes and further interpretation within the project engineering. This is a summary table of the generalised encountered stratigraphy at the study site. The full details of soil depths, height and descriptions at each investigation location, are presented in Trial Pit and Borehole log sheets in Appendices C and D.

Sample Descriptions	BGS Area-Wide Lithology	Depth (mbgl)	Geotechnical Grouping
Loose soft dark brown slightly slity slightly gravelly sandy clayey TOPSOIL with rootlets noted. Gravel is fine rounded to sub-rounded of mixed lithologies.	(N/A – Topsoil / ploughing layer)	Zero to 0.35m	Topsoil
Loose red clayey slightly gravelly SAND. Gravel is fine to coarse sub-rounded to angular of mixed lithologies. Medium dense orangey brown slightly clayey gravelly SAND. Gravel is angular to rounded of mixed lithologies. Soft to firm orange brown sandy slightly gravelly CLAY with cobbles and boulders. Gravel is subangular to subrounded fine to coarse of mixed lithology. Stiff to very stiff orange brown sandy slightly gravelly CLAY with cobbles and boulders. Gravel is subangular to subrounded fine to coarse of mixed	* Hatton Till Formation (Diamicton): Unsorted glacial deposits of clay, sandy clay, sand with pebbles and boulders	Typically from 0.3m to between 1.25m and 3.1m	Glacial Till
Weathered GRANITE recovered as pink and orange angular fine to coarse gravel. Moderately strong pink and grey GRANITE. Fractures: close to medium spaced subhorizontal dipping approximatley 45°, rough stepped.	Red Peterhead Pluton granite: Conglomerate, with subsidiary horizons of sandstone and clay	Typically from 1.25m to 3.1m	Granite Bedrock

* Examples of Hatton Till sample descriptions are given to show the range of soil types encountered. Several other descriptions were obtained which varied slightly from the above.

Table 3: Encountered stratigraphy sequence at the proposed site

The general finding of stratigraphy at the site was in line with the area-wide BGS expectations of Topsoil over Glacial (Hatton) Till over (Peterhead Pluton) Granite. Neither the Lake Alluvium indicated in BGS area maps, nor the Buchan Gravels formation noted in the LNCS local designation, appear to be present at any of the Fourfields site area or AC cable route test locations in question.

Topsoil

The topsoil was encountered extending to a consistent depth of 0.30 to 0.35m at all trial pit and borehole locations across both the converter site and AC cable route. There was a sharply defined change in all cases at ploughing depth, to the underlying undisturbed ground beneath. As the proposed converter station and AC cable route are all located within similar stretches of arable land, it can be expected that this condition will be encountered site wide, but later detailed design investigations will verify this.

The soil is a typical loose topsoil medium of mixed lithologies and, although the current farm manager reports the ground at Fourfields is not very productive arable land, this is probably due to the poor draining, high clay content subsoil medium (the Glacial Till), rather than the topsoil itself. In terms of grass, shrub and tree planting for landscaping post-construction, the topsoil should provide a reasonably good growing medium.

Neither the Stage 1 trial pits or the Stage 2 boreholes showed any evidence of "made ground" below the topsoil, which could have indicated any man-made quarry workings, infill pits or spoil cast, should they be present. Hence the risk of finding infill pits or spoil areas related to historic quarry workings is deemed to be very low. Nevertheless, contamination testing was undertaken at the Fourfields site and the results are discussed in Section 6.

Glacial Till

These were the predominant drift geology strata from the Hatton Till Formation (Diamicton) encountered across all test locations. They were generally undifferentiated and ranged from loose, slightly gravelly sand, to firm to stiff and very stiff, sandy, slightly gravelly clay. These strata covered the full depth at all test locations on the Fourfields site from below the topsoil to the rock level at between 1.20 to 3.10 mbgl. This was also the case at all test locations on the AC cable route, either down to rock or at least to the extent of the trial pits when rock was not encountered.

In TP03 up the hill to the west of the proposed converter station site, a single cobble sized piece of black, friable, glassy rock was encountered within the Glacial Till, possibly a type of flint or similar diagenetic sedimentary particle which has become entrained in the Till during glaciation (see Figure 3). It was about 100mm in size and was embedded in the side wall of the trial pit at a depth of 0.7m, having been partially dislodged by the excavator bucket.

Figure 3: Flint cobble entrained in Glacial Till at TP03

Referring to the BGS map for the area, the site is located on the intersection of three different surface drift materials: the Lake Alluvium to the east; the Glacial (Hatton) Till Formation to the north; and Head 1 Flinty Gravel deposits to the west. A designated archaeological site for Neolithic flint workings also lies approximately 500m further west of the TP03 location. This would indicate that further up the hill to the west of the Fourfields site may be close to the overlap of the Glacial Till with the Head 1 Flinty Gravel. As the flint cobble was found 400mm down within the undisturbed ground at TP03, and as there was no evidence of other flint pieces in the trial pit, then it is believed that the occurrence is geological rather than archaeological at this particular location.

Granite Bedrock

The Peterhead Pluton Granite was encountered in all trial pits and boreholes on the Fourfields site. This ranged from a minimum of 1.25m depth to 3.10m. The rockhead was generally shallower towards the south and west of the converter station site area higher up the hill and deeper towards the north and east boundaries of Fourfields at the lower parts of the site. There was also a greater degree of weathering of the granite towards the same boundaries, coinciding with the locality of the burn / field drains and presence of groundwater, which therefore may be connected with hydraulic related weathering. The rock was stronger and more competent the higher up the site to the south and west it was encountered.

The rock was only encountered in the first trial pit on the AC cable route on the top of the hill close to the property Highfield (TP04) at a depth of 1.30m. At all other test locations along the cable route lower down the hill to the north, rockhead was absent down to at least 3m below ground, and so appears to be well below the proposed minimum engineered depth of the cable installation of 1.5m, and allowing the possibility for the cables to be installed deeper if required for topographical or other constraint reasons.

Groundwater Conditions

Groundwater was encountered in TP01 at 1.7 metres below ground level (mbgl) and BH01 at 3.0 mbgl, both located in the north-east corner of Fourfields, and in BH03 at 1.3 mbgl along the eastern boundary. It was struck at or close to the rockhead level of the Peterhead Pluton granite, but then in TP01 and BH01 had a rebound effect up to around 1.0-1.3 mbgl. The presence of groundwater seems to be localised and coincident with the occurrence of weathered granite in these particular locations.

Firstly, this would be consistent with the BGS and SEPA data that, *"These rocks have negligible intergranular porosity and, therefore, can store groundwater only within fractures. All groundwater flow is through fractures, along bedding planes, joints or fault lines. Small amounts of groundwater are likely in the near surface weathered zones and secondary fractures, and there are also rare springs".* Secondly, the rebound would suggest that the groundwater present within the weathered rock has a slight artesian effect due to the relatively impermeable overlaying Glacial Till, although this effect was not observed at BH03 on the eastern boundary close to the burn. The permeability of the ground was measured in TP01, BH02 and BH03 at an average of 0.5 I/s, which is very low and in line with the BGS and SEPA classification that, *"The regional bedrock aquifer to be of low productivity (0.1-1 l/s)"*.

Given the strike depth at BH03, it is possible the groundwater is in hydraulic continuity with the burn at this location. However, further down the field in the north east corner, the strike depth of 3mbgl and slight artesian effect would suggest that it is not in hydraulic continuity with the burn and field drain / ditch at this location.

Groundwater was not encountered at all in BH02 on the northern boundary next to the small field drain / ditch, which would suggest this is surface water drainage only and, indeed, this ditch has been observed to be dry in the summertime. The neighbouring Braeside Trout Fishery pond is also situated around 50m north of the TP01 / BH01 and BH02 locations. However, the water level in the fishery pond was found to be 1.2m above the rebound (artesian head) level of the groundwater in TP01/BH01 and, as stated above, no groundwater was encountered in BH02. Furthermore, the pond has low embankments around three sides (north, south and east), raising it up slightly above the level of the nearby field drains / ditches and the ground level of the adjacent areas of Fourfields. The pond embankments therefore, are assumed to be engineered (e.g. clay core or similar) or naturally impermeable (e.g. built up from the glacial till) to isolate the pond from the surrounding groundwater, otherwise the pond would simply drain away via the ditches. All of this evidence would point to the fact that the groundwater below the site cannot be in hydraulic continuity with the pond, substantiating the possibility that the pond is fed by either a spring emanating from a discontinuity within the granite around Highfield, or perched groundwater / surface water run-off from the rising ground west of the pond.

The quarry settlement ponds also beyond the northern boundary, east of the fishery pond, are used for primary treatment of run-off or any pumping which is collected from the quarry working areas. As such, they are hydro-geologically isolated from the surrounding ground, and cut-off from any possible groundwater pathways from Fourfields by the burn in between.

Finally, groundwater was not encountered in any of the AC cable route test locations. The areas of the AC cable construction that will be different in this respect are the burn and field ditch crossings, where groundwater is likely to be encountered, and appropriate pollution and sediment control measures will need to be employed here.

6 Laboratory Testing Results

The laboratory testing methodologies were contained within Section 4 and the field and insitu test results were presented and discussed throughout Sections 4 and 5. This section now presents the laboratory results in terms of firstly the physical properties of soil samples tested at various locations followed by discussion of the human health risk assessment carried out for the laboratory contamination testing results.

Physical Testing / Index Properties

The geotechnical tests carried out in the Stage 1 categorisation can be found in Appendix C and the Stage 2 categorisation in Appendix D. The following commentary does not distinguish between the two, but provides interpretation of the range of properties for the soil type categories encountered across both investigations for the site as a whole. Of most relevance for earthworks and foundation proposals will be the engineering properties of the Glacial Till and the Granite Bedrock.

Moisture Content

Natural moisture content within the Glacial Till strata at Fourfields generally varied from 9.4% to 15% with a mean value of 12% (Note: one outlier datum of 26% was discounted). The nature of clay is that a proportion of water molecules are chemically bonded into the particle matrix, so the general condition of water content found here should be sufficiently low not to create inherent problems for bogging-down, rutting, etc. of standard earthworks plant. Similar values were even found in the sub-strate below the bottom north east corner of Fourfields which is known to have regular standing surface water. The south east corner of the platform area may be more at risk in this respect where the groundwater level could be above platform level. However, it is possible this may be at rock level rather than within the Glacial Till, thereby mitigating the risk of bogging down in wet clay.

The moisture content on the AC cable route is generally higher ranging from 9.7% to 27% with an average of 19%, however, more data points are required to make judgements. In mitigation, the cable route earthworks proposals include a central haul road which will be of a temporary construction, such as structural matting or a floating road arrangement of geotextile under Type 1 fill, for the bearing of plant and machinery. Further CBR and MCV testing of the soils along the route will allow this to be determined and designed accordingly during detailed construction planning.

Density Measurements

Dry densities of the predominant Glacial Till drift strata at Fourfields ranges from 1.56 - 2.14 Mg/m³ with an average of 1.87 Mg/m³. From the limited data obtained there appears to be a marginal trend of increasing density with depth.

Only one data point at BH04 exists for the AC cable route with a dry density of 1.58 Mg/m³ which may correspond with the higher moisture content of 27% found within this sample, i.e. a softer, less stiff clay.

Particle density (specific gravity) of the Glacial Till constituent material is very consistent, varying from unit weight 2.60 - 2.63 (mean 2.62) at Fourfields and 2.56 – 2.61 (mean 2.58) on the AC cable route.

Rock dry density of the Peterhead Pluton Granite Bedrock was 2.49 Mg/m³.

Compressibility, Recompaction & Shear Strength

Atterberg tests on the Glacial Till all revealed the matrix to be of low plasticity, which corresponds with particle size results in that the material is generally an unsorted but well graded clay matrix containing reasonable proportions of silt and sand sized particles. Liquid Limit was generally around 30%, which is on the cusp between low and medium compressibility for fine grained soils. One-dimensional consolidation testing up to 400 kPa was undertaken on three samples from Fourfields and revealed C_v values between $6 - 8 m^2/year$.

All samples tested were around a minimum of 10% by weight of clay passing except at the TP06 location which contained around 33% clay by weight. This is reasonably close to BH04 which, as described above, may have a softer, less stiff and hence more compressible clay matrix around this location.

Compaction tests were undertaken on three samples of the Glacial Till from Fourfields using a 4.5 kg rammer and gave an optimum moisture content of around 11% to achieve a maximum dry density of around 1.97 Mg/m³ with 3 - 4% air voids. With the naturally occurring moisture content of the Glacial Till on Fourfields having an average value of 12%, close to optimum compaction should be achieved for the majority of the operations without the need for additional wetting. Moisture Condition Value testing also revealed a good moisture content relationship, so the in-situ testing target for optimum compaction of the Glacial Till will be represented by an MCV count of around 12-13.

Undrained triaxial shear strength testing of three undisturbed samples of the Glacial Till from Fourfields were undertaken and found cohesive strength to be in the range 16 - 30 kPa with friction angles between $6.3 - 11.4^{\circ}$. Due to the focus of the ground investigation at the consent design stage, it should be noted that these samples do not correspond with intended foundation locations on the site. Further investigation should be undertaken in this respect at a later stage of development for location specific foundation design.

Similarly, the borehole locations close to the watercourses generally found only weak weathered rock at these locations and only one intact rock core for strength testing was recoverable from 5 mbgl at BH01. The unconfined compressive shear strength recorded in the test was 25.5 MPa. This puts the rock in this sample into the category of Moderately Strong, but even this would only be acceptable for use as general fill, with the standard for use as Type 1 fill for road sub-base being 30 MPa and upwards. However, from geological hammer blows on the rockhead encountered at the base of TP02 and TP03 further up the site to the south and west, the rock strength was estimated at around 100 MPa in the range Strong to Very Strong.

It is recommended that further investigation is required of the Granite Bedrock over the whole area and depths to be excavated to create the converter station platform. The Strong to Very Strong rock described above would certainly be suitable for re-use as structural fill for road bases and foundations and further unconfined compressive, point load, aggregate crushing and CBR strength tests should be carried out to determine its quality. In addition, further tests such as magnesium sulphate, flakiness, Los Angeles abrasion and water absorption tests can be carried out to determine the rock's suitability for use as concrete aggregate for foundations, floors and structures within the converter station.

Chemical (Contamination) Testing

The headings of the various suites of tests were outlined in Section 5. Each of these suites covered testing for the presence of multiple individual base chemicals or compounds. A full set of results is given in Appendix C.

The tests were carried out in approved and certificated soil testing laboratories to UKAS accredited standards and BS 10175 (2001)⁵. Each test measures the *Detected Concentration* level of a particular chemical or compound, but has a deminimus *Traceability Limit*, i.e. the lowest concentration at which a contaminant can be detected by the testing equipment.

Detected concentrations were then compared to Generic Assessment Criteria (GAC) derived from the Contaminated Land Exposure Assessment (CLEA) model v1.06 (Environment Agency, 2009)¹² as described below.

Choice of GAC

UK Soil Guideline Values (SGV) are GAC for assessing chronic risks to human health from long-term exposure to contaminated soils produced by the Environment Agency (2009)¹³. The primary purpose of the SGV is to act as an *intervention value*, which may be used to inform judgments' about the need for action to ensure the land use does not pose an unacceptable risk to the health of the intended users. SGV are derived using established Health Criteria Values (HCV): the HCV of a chemical is the level of exposure at which long-term exposure to the chemical in soil is tolerable, or poses a minimal risk. There are currently 11 SGV available for 6 organic and 5 inorganic chemicals, based on a soil organic matter (SOM) of 6%.

Land Quality Management (LQM) and Chartered Institute of Environmental Health (CIEH) produced GAC using the CLEA model for 89 chemicals (January 2015)¹⁴ for the standard land uses given in CLEA, and two public open space land uses, for three SOM percentages (1%, 2.5% and 6%). A set of GAC for 35 substances, for the same three SOM percentages, has been jointly published by CL:AIRE, Environmental Industries Commission (EIC) and the Association of Geotechnical and Geoenvironmental Specialists (AGS)¹⁵. Both sets of figures have been accepted by the contaminated land industry and we have referred to these GAC for the Tier 1 human health risk assessment.

It is considered that the site's end use as a converter station site, described above, most closely matches the commercial standard land use described in CLEA and will be assessed accordingly.

As SOM concentrations were not available from the sample data, the most conservative GAC have been referred to (SOM 1%), and all soil results have been compared to GAC for a standard commercial land use for a SOM of 1%. The resulting Tier 1 human health risk assessment table is included as Appendix E.

Human Health Risk Assessment

All contaminants of concern were recorded below the GAC or laboratory limits of detection, therefore, it is concluded that the concentrations recorded in the soil samples taken are unlikely to pose a risk to human health.

(Note: potential Environmental receptors will be considered separately in the Land Quality and Water Quality chapters of the Environmental Statement).

7 Geotechnical Assessment, Discussion & Conclusions

This concluding section of the report makes an outline assessment of geotechnical implications of the Stage 1 and 2 findings. This will help to inform further discussion with stakeholders and technical teams through the process of EIA and also post-Planning development. It is based on the resolution of the current information derived from the Stage 1 and 2 investigations and it should be noted that there is a need for further detailed investigation and interpretation prior to full engineering design being undertaken by a design and build contractor.

The following geotechnical areas or issues will need to be considered in relation to the future design development.

General

In the context of the overall scope and proposals for NorthConnect's UK converter station, it can be concluded from the evidence of the Stage 1 and 2 investigations that the Fourfields site is generally suitable and presents no major problem from a geotechnical perspective.

The nature of the overlying ground as predominantly cohesive, firm to stiff clay with medium dense granular content will present no significant issues for standard methods of earthworks excavation, recompaction and foundation design. It is likely that rock is going to be encountered in relation to a significant proportion of the groundworks and the design and construction approaches will have to be adapted accordingly to cater for this. This is discussed below under Platform Engineering.

The focus of the Stage 2 investigation was to establish the groundwater conditions over the northern sector of the proposed site. Conclusions have been drawn from this that seem to indicate that groundwater and contamination pathways will not be an issue for the development proposals, but this should be kept under scrutiny during further investigation and design development of the site. In particular, the permanent / temporary works design, plus construction sequencing, will need to consider potential pathways and receptors in order to minimise or eliminate environmental risk. Should further evidence alter the current

conclusions, options for surface water management and protection of groundwater can be considered and adapted in the detailed geotechnical design.

Foundation Design

Standard mass reinforced concrete foundation design for either building column footings or electrical equipment plinths should be suitable for the predominantly Glacial (Hatton) Till Formation overburden material with the appropriate checks on shear failure and settlement tolerances. It is possible that pre-cast or cast in-situ concrete piling may need to be considered for localized strengthening of heavy equipment footings in this material when detailed layout plans and equipment specifications are known in relation to Till depths and extent of rock weathering at specific locations. However, the proposed design has the main building and the Transformers located away from the north east corner of the site area where this risk is highest. The proposed layout plan would actually imply that most of the footings will be founded in competent rock, which opens the option of rock bolting, either directly through base plates, or extending bolts into the re-bar arrangements of small reinforced concrete footings bonded with the rock.

Three undisturbed core sample of the Glacial Till were recovered during the Stage 2 investigation and shear strength testing was undertaken giving cohesive strength of between 16 - 30 kPa and friction angles from $6.3 - 11.4^{\circ}$. All of the foundation footings will be situated on or below level ground, whether that be natural or engineered, and none are near to the top of slopes or embankments and, as stated above, the majority of the high loading foundations are likely to be in rock on the basis of the current consent design.

A risk in this area may be the lateral and vertical extent of the weathered granite. The boreholes in the Stage 2 investigation were targeted mainly at securing groundwater information close to the eastern and northern field drains / ditches at the boundary of the site. In these locations, the depth of the weathered zone is substantial, generally down to around 5 mbgl, with Weak rock encountered below that. At the southern and western extents of the site, however, we know from the trial pit data that relatively competent, unweathered, Strong to Very Strong rock is encountered at just 1.25 mbgl. So, it is expected that the weathering is likely to be localised to the areas around the field drains / ditches at the bottom of the slopes (i.e. hydraulic weathering in the areas where groundwater is present) and not extend too far away from these boundaries. None of the building foundations will be close to these locations and even the outdoor equipment footings will be some distance away due to the landscape mounding around the periphery of the site. The transformer bases will be the largest, closest foundations to these boundaries. More detailed investigation will be required alongside further design development to core the rock at specific foundation and equipment locations in order to determine the extent of weathering and adapt foundation methods accordingly.

Platform Engineering

For the Converter Station site, a suitable construction platform will need to be created. It is intended that this will be achieved as a single tier through a balanced cut and fill operation incorporating the platform and screening mounds, thereby minimising the need for import or export of materials. In addition, the excavated rock may be able to be crushed and graded for use as sub-base or base course material for hardstanding areas, blinding base course for

foundations or even aggregate for concrete batching if suitable. The same rock as occurs on the NorthConnect site is quarried commercially as structural fill and concrete aggregate at the Stirling Hill quarry site, immediately to the east. The rock can be locally quite variable in terms of strength and weathering profile, so further testing should be undertaken to determine its suitability as structural fill. As general fill for the screening mounds however, all of the excavated rock is likely to be suitable.

The platform height has been considered to balance a number of issues including: engineering, environmental, noise reduction and landscape and visual factors. The optimum level to satisfy these constraints for the proposed Converter Station site has been estimated at 63m above sea level, cutting it into the landscape, with the excess fill to be used to create screening mounds around the periphery of the site. The same cut and fill balance could be achieved with the platform at a variety of heights, but this would impact on other environmental factors, e.g. lower the platform but impact on groundwater and raise the screening mound to a height which might make them difficult to engineer or unacceptable in visual terms; or raise the platform height but then make the building more visible, possibly with adverse noise effects and having less material available for screening.

With this assumption of 63m above sea level, it is estimated around 331,000 m³ of material will be excavated, made up of 211,000 m³ of rock, 85,000 m³ of glacial till and 35,000 m³ of topsoil.

Topsoil will be stripped from the platform area, and also from the area beneath the northern and eastern permanent screening mounds, and stockpiled for future topsoil reinstatement of landscaped areas. The Glacial Till will then also be stripped from across the platform area, down to foundation level, or to rockhead where rock will be encountered above foundation level (which is likely to be over the majority of the site). The exposed rock will then be excavated down to platform or foundation level over the remainder of the site. Overcut to below platform depth will be necessary in places, to allow for foundations, drainage arrangements and other underground infrastructure to be installed. Detail of this will be developed through the detailed design process.

As described above, the Peterhead Pluton Granite is anticipated to be significantly weathered on the east and north of the site, but transition to strong and very strong moving away from those boundaries (up to 100 MPA). Hence, standard excavation may be possible in some areas, but hard ripping and blasting are likely to be required over a significant area. An outline assessment of the blasting requirements, giving anticipated charge weights and the effect of blasts on surrounding receptors, has been carried out separately to this investigation (Vibrock, 2015)¹⁶. As the largest batters for the excavated rock will be towards the south west corner of the platform (i.e. into the hillside) where the very strong, competent rock is anticipated, then slope angles can be steep. A slope of 75% has been assumed for the consent design but, for example, the working face of the quarry immediately to the east in similar rock is vertical.

In order to re-utilise the ripped or blasted granite as a fill material, it will be necessary to have crushing and grading facility available either on site, or possibly at the neighbouring quarry. In addition to being used as general fill, covered with other material and topsoil, the granite should provide an excellent sub-base and base course for foundations, plinths, hardstanding and site drainage infrastructure. Additional testing will need to be carried out for suitability as concrete aggregate.

The 'fill' operations also have yet to be geotechnically designed, as they will vary across the site dependent on the detailed building and equipment designs and their various load bearing foundation requirements. In outline, however, the base of any fill areas will be formed using the excavated rock, requiring crushing and grading of any harder rock, which will be placed in layers using compaction plant (e.g. sheeps-foot rollers). Across equipment areas, this will incorporate a membrane to prevent plant growth but, in landscaped or other grassed areas of the site, varying depths of the stockpiled glacial till and then topsoil will be built up on top of the crushed rock.

Foundations directly on rock will be fixed and, with re-compacted granite, providing it is of structural fill quality and engineered correctly, settlements will also be negligible. The use of the Glacial Till as a more compressible material presents the risk of differential settlements spatially across the site. The highest risk structure in this respect will be the main converter building. The Stage 2 investigation was targeted mainly at the groundwater and rock profiles on the north and east boundaries of the site, so it is recommended that further testing needs to be undertaken of the compressibility and compaction characteristics of the materials to be excavated from the rest of the site. From this and the detailed layout plans still to be developed, the appropriate foundation and screening mound designs can be planned and a detailed earthworks specification developed accordingly.

Landscaping

The principal landscaping issue from a geotechnical perspective will be the formation of the landscape screening mounds around the periphery of the site platform area. As described above, a cut and fill balance has been achieved for a platform height of 63m above sea level and the screening mounds have been designed by a landscape architect to have smooth and gently sloping external faces. For the volumetric calculations involved in this, the following assumption has been made regarding bulking factors of the excavated materials.

Geotechnical Grouping	Bulking Factor *
Topsoil (ploughed)	1.00
Topsoil (undisturbed)	1.25 – 1.45
Glacial Till	1.20 – 1.40
Granite Bedrock	1.50 – 1.80

* Loose tipped, not re-compacted

Table 4: Bulking factors of the encountered strata (estimated from Horner, 1988)¹⁷

No bulking was applied (i.e. a factor of 1:00) to the topsoil, as the vast majority of the site area is covered by working arable land which is ploughed regularly. During the Stage 1 investigation, it was noted that the Glacial Till appears to have a pattern of increasing density with depth. However, it was judged that the above quoted bulking factor range should provide a reasonable estimate and the mid-point value was used. Similarly, given the current evidence of possible variability of the granite rock across the site from weak to very strong, the mid-point value above was used for current estimates. Note that these are the loose-tipped factors and that detailed earthworks specifications can be adapted for a greater or lesser degree of re-compaction when more detailed information is available.

For the outer faces of the landscape screening mounds, slope stability will need to be checked with further investigation, however, given that landscape and visual design guidance

limits them to 1 in 3 gradients, it is not anticipated that the nature of any of the excavated and re-compacted materials will present a problem with slope stability given adequate drainage. The fact the core fill material will be crushed rock should in turn present no issues for mound drainage.

Given space constraints on the site however, the inner slopes of the screening mounds are likely to need to be engineered with steeper slopes (approximately 75°) and a crib-wall type construction has been proposed and a typical configuration detail included in the consent design. These designs will need to be further developed, section by section around the site, as detailed investigations and earthworks specification takes place. The key considerations will be the overall slope stability of the soil-structure interactions of the wall design and its drainage conditions. Similar to above, the predominance of crushed rock as the core fill material should reduce the drainage-related stability risks for the designs.

Cable Laying

The proposed cable route is along the northern edge of the Fourfields site, past Highfield and into the fields on the west side of the Highfield access road. The cables then run due north, parallel to the access track, and along the west side of the unnamed road past Denend, with the cables then passing under the road between Denend and Hjaltland. From here it will continue northward, on the east side of the unnamed road, before turning east to connect into the proposed 400kV extension to the Planned New Peterhead Substation. The cable circuits will comprise six underground cables (3 cables per circuit) and will be buried in two separate trenches, three cables in each, with each trench measuring 1.5m deep and 1.5m wide, and separated by a temporary 7m wide haul road.

The main geotechnical issue for the engineering of the cables will be the relative depth of the rockhead. With the provision for laying the cables within a granular bedding material in the trenches, then the minimum engineered depth below the ground surface for the cables is 1.55m, but this may go deeper in places due to undulation of the ground's topography or, for example, below ditches, watercourses or the unnamed road crossing. This may present localized water issues for cable-laying but standard methodologies and poluution prevention measures can be applied.

Although the rock depth on the cable route immediately away from the converter station is greater than the engineered depth of 1.55m, by the time the cable has reached the location of TP03 at the top of the hill in the north west corner of Fourfields, the rock depth has decreased to around 1.25m and the rock is competent with very little weathering of the surface. At TP04 along the crest of the hill to the north of Highfield, however, although the rockhead was encountered at 1.3 mbgl, it was recovered as weathered silty, sandy gravel with relative ease by the excavator bucket down to more competent rock at 1.9 mbgl. The rest of the trial pits and BH04 along the cable route to the north did not encounter rock at all down to their termination depth of between 2.5 - 3.0 mbgl.

The conclusion, therefore, is that the cables laying will only require rock excavation via hardripping over a minimal proportion of the route (approximately 150m) in the north west corner of Fourfields and across the Den of Boddam access path. As the route passes into the field west of Highfield, sufficient depth of traditionally excavatable material should once again be encountered for the rest of the cable route.

Groundwater & Surface Water Implications

A significant focus of these consent stage ground investigations have been to identify and address potential risks to neighbouring water bodies. The desk findings have been discussed at length in Section 3 Hydrology and Hydrogeology, and the field investigation findings in Section 5 Groundwater Conditions. A conclusion from this evidence to date is that any surface water run-off from Fourfields appears to be intercepted by the burn and field drain / ditch along the east and north of the site respectively, and flow away to the north within the above burn. These water courses receive outflows from, but do not have any inflows into, the Trout Pond and Quarry Settlement Ponds, therefore it is concluded that there are no surface water pathways from Fourfields into these nearby water bodies.

Similarly, there does not appear to be any groundwater continuity with the water bodies. Any groundwater encountered on Fourfields appears to be localised within the weathered zones of the rockhead and, crucially, the groundwater level at the north east corner is lower than in the nearby burn and ditch, which are in turn lower than the water level in the Trout Pond. It is feasible there could be some groundwater flow in the opposite direction (i.e. away from the Trout Pond), but anything greater than a very low seepage rate would likely mean the Pond draining away via the surrounding ditches.

In terms of the implications for the development proposals, for surface water, temporary drainage design will be required to collect and provide treatment for any siltation arising from construction activities, as well as providing attenuation mitigation and treatment for the risk of any pollution incidents reaching the watercourse. The details of this will need to be planned and managed by the earthworks contractor. Furthermore, the proposed construction methodology for building the northern and eastern screening mounds around the site as one of the first activities, will ensure that surface water on the site is physically isolated from any accidental discharges to the watercourses.

For groundwater, a key mitigation to any potential impacts is firstly that the platform level has been designed at 63m AOD to be approximately 2.5m above the groundwater level in the northeast corner of the site. It is possible the groundwater level may be higher and intercept with the platform level for a small portion over the south east corner of the platform. It is thought the groundwater at this location is in hydraulic continuity with the burn, however, the platform will be lower than the burn here, so the platform excavation may well change the direction of groundwater flow over a localised area, from towards the burn, to instead draining / seeping into the excavation. Given the low permeability of the ground, the seepage rates into the excavation over the area concerned have been estimated as amounting to less than 0.5 l/s. One option for mitigating this would be to construct a groundwater cut-off underneath the landscape screening bund at that corner of the site, however, this would have greater environmental impacts than the issue it was solving, due to the additional temporary excavation required close to the burn. The preferred solution would be to simply install a toe-drain and divert the flow into the temporary (and later permanent) site drainage, which will gravitate down through the treatment arrangements and then back into the burn a maximum of 200m distant. This should be reviewed later during detailed design.

It was concluded from the Stage 1 testing that potential existing sources of contamination do not represent a material risk to human health. Therefore, no special further measures need be taken for the site and the development, other than a watching brief on any further ground investigations in case evidence arises of made ground or historic mining activities. The

temporary and permanent works design, along with the construction activities themselves, will present a higher risk of potential silt or pollution incident contamination via either surface or groundwater sources, but these can be mitigated by good construction practice and temporary drainage design as discussed above.

References

- 1 ERS: REP01-REV02, "North Collielaw & Denend, Peterhead, Desk Study", November 2013.
- 2 Technip Offshore Wind Ltd: TOWL-1076-RT-ENG-001, "NorthConnect Landfall Option Study", December 2013.
- 3 British Standards Institute: BS EN, "Eurocode 7: Geotechnical design", BSI, 1997.
- 4 British Standards Institute: BS 5930 "Code of Practice for Site Investigations", BSI, 1999.
- 5 British Standards Institute: BS 10175 "Code of Practice for the Investigation of Potentially Contaminated Sites", BSI, 2001.
- 6 British Standards Institute: BS EN ISO 14688-1:2002+A1:2013, "Geotechnical investigation and testing. Identification and classification of soil. Identification and description", BSI, September 2002.
- 7 British Standards Institute: BS EN ISO 14688-2:2004+A1:2013, "Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification", BSI, January 2006.
- 8 IEEE: Standard No.81-1983, "Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System", IEEE, 1983.
- 9 Mott Macdonald: Specification, "Soil Resistivity Measurement", NorthConnect, July 2014
- 10 British Standards Institute: BS 1377:1990 Parts 1 to 9, *"British Standard Methods of Test For Soils For Civil Engineering Purposes"*, BSI, August 1990.
- 11 ASTM International: ASTM D7012-14, "Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures", 2005.
- 12 Environment Agency: CLEA software (version 1.06), "Contaminated land exposure assessment (CLEA) tool", EA, May 2014.
- 13 Environment Agency: Various, "Soil guideline values (SGVs) for chemicals to assist in the assessment of risks from contaminated land", March 2009.
- 14 Nathanail, C.P. *et al: "LQM/CIEH Suitable 4 Use Levels"*, Land Quality Press, Nottingham, January 2015.
- 15 EIC/AGS/CL:AIRE: ISBN 978-1-905046-20-1, "Soil Generic Assessment Criteria for Human Health Risk Assessment", CL:AIRE, January 2010.
- 16 Vibrock: R15.8589/2/AF, "Assessment of Environmental Impact of Blasting at Fourfields Interconnector Converter Station Site, Aberdeenshire", March 2015.
- 17 Horner, P.C.: "Planning & Construction for Earthworks Projects", 1988.

Appendix B - BGS Solid & Drift Geology

BGS Drift Geological profile of the area

Appendix C – Stage 1 Ground Investigation Data

Stage 1 Trial Pit Layout Drawing

Stage 1 Trial Pit Logs

			SYNERGIST PROJECTS	and the second	-
			Trial Pit Log	TP No.: Sheet 1 of 1	TP1
Level (m	AOD):	61.92		angles Top 7	
Coordin	ates:	E: 412053.	726 Location: Four Fields	ATNER	1515
Date:		N: 841467	535 Client: NorthConnect KS	01	Project
Plant:		JCB-3CX	cognices. notançitteliq		
Depth	Level	Legend	DESCRIPTION OF STRATA	Samples	Dept
(mbgi)	(mAOD)	Vinnin	The second state the second state of the secon	Tests	(mbg
0.35	61.67		Loose soft dark brown slightly slightly gravelly sandy TOPSOIL with rootlets noted. Gravel is fine rounded to sub-rounded of mixed lithologies.	D (51)	0.00
0.50	61 42	000	Medium dense orangey brown gravelly SAND. Gravel is medium to coarse angular to sub-rounded of mixed lithologies.	D/B (S2)	0.40
9.29	UL.4L	10-10-	Medium dense firm to stiff orangey red sandy slightly gravelly CLAY. Gravel is fine to medium sub-rounded of mixed lithologies.		
		10-10		D/B (S3)	1.00
		00		•	1.35
1.65	60.27		Loss and the second	1	
		0-Q:	Loose red clayey slightly gravelly SAND. Gravel is fine to coarse sub-rounded to angular of mixed lithologies	D (S4)	1.70
1.75	60.17	XXXXXXX	Trial Pit comolete	- 1-1	
			ANNOTATED SKETCH DRAWING (Not to Scale)		
AMPLES Env Dist Bull V Wa IV Har	/ TESTS ironmenta urbed k ter nd Vane	Il sample	OTHER INFORMATION Side stability: Vertical faces stable. Groundwater flow area at base looser. Other details: 1. TP location recently ploughed. Topsoil consisted grass onto clay at 2. Groundwater flow observed in below 1.65 mbgl layer 3. 3" Pump (1.4 l/sec) marginally overcame inflow rate in 1.5m x 1.5m	field bounda	ries.

Level (m	AODI:	74.24		SYNE	RGIST PROJECT Trial Pit Log	rs		TP No.: Sheet 1 of	TPZ
Coordin: Date: Plant:	ates:	E: 411924 N: 841273. 12-Mar-14 JCB-3CX	425 086	Location: Four Fields Client: NorthConnect KS Engineer: R.Blanchfield		l	SYNERBIST Project		
Depth	Level (mAOD)	Legend		DESCR	IPTION OF STRATA			Samples	Depth
0.30 1.20 1.30	73.94 73.04 72.94	0 0 0 0 0 0 0 0 0	noted. Gravel is Medium dense rounded of mix Clayey sandy CC Proved bedrock Granite)	fine rounded to sub- orangey brown slight ed lithologies. DBBLES consisting we Strong to very stror Tri	rounded of mixed II ly clayey gravelly SA athered rock head o lag red GRANITE (pro al Pit complete	ithologies. AND. Gravel is an onto bedrock. obably Red Peter	gular to	D (51) B (52)	0.45
				ANNOTATED SKETCH I	DRAWING (Not to 5	icale)			
AMPLES D Dis D But W Wa IV Har	i/TESTS irronmenta turbed k ter nd Vane	al sample	OTHER INFORM Side stability: Other details:	ANNOTATED SKETCH I ANNOTATED SKETCH I ATION Vertical faces stable 1. TP location recen 2. 3.	DRAWING (Not to 5	cale) oil consisted gras	is onto clay at	field bound	aries.

			SYNERGIST PROJECTS Trial Pit Log	TP No.: Sheet 1 of 1	трз									
Level (m Coordin Date: Plant:	ates:	76.40 E: 411800. N: 841485. 12-Mar-14 ICB-3CX	148 Location: Four Fields 033 Client: NorthConnect KS Engineer: R.Blanchfield	SYNER	GIST									
Depth	Level	Legend	DESCRIPTION OF STRATA	Samples	Depth									
(mbgi) 0.30 1.25 1.35	76.10 75.15 75.05	20 1. 0 1. 0 10 10 10 10 10 10 10 10 10 10 10 10 1	Loose soft dark brown slightly silty slightly gravelly sandy TOPSOIL with rootlets noted. Gravel is fine rounded to sub-rounded of mixed lithologies. Medium dense orangey brown slightly clayey gravelly SAND. Gravel is angular to sub- rounded of mixed lithologies. Clayey sandy COBBLES consisting weathered rock head onto bedrock. Proved bedrock. Strong to very strong red GRANITE (probably Red Peterhead Pluton Granite) Trial Plt complete	D/B (S1)	<u>(mbgi</u>) 0.50									
			ANNOTATED SKETCH DRAWING (Not to Scale)	10										
AMPLES Em) Dis i Bu Wa 1V Ha	S/TESTS vironment sturbed lk atter nd Vane	al sample	Intrusion of a medium dense grey brown clayey slightly gravelly SAND observed across corner of trial pit between the TOPSOIL and underlying orangey brown layers:	t field bounda 0 mbgl (possi	rries. bly flint)									
Trial Dia	Commune La	Testine		Disal		Tak	Tub	Tuba	Dull	Date	D. III	Date	N 4 - 1 - 1	Castash
-----------	------------	-----------	--	---------------	-------------	--------------	--------------	----------	-------	-------	------------	----------------	-------------	----------
Trial Pit	Sample	lesting		BIOCK		lub	+ du i	tub +	BUIK	Dry	BUIK	Dry	Noisture	Geotech.
				Dimension	S		Bulk Mass	Dry Mass	Mass	Mass	Density	Density	Content	Group
											ρ	$\rho_{\rm d}$	w	
(I.D.)	(I.D.)	(I.D.)	(mm)	(mm)	(mm)	(kg)	(kg)	(kg)	(kg)	(kg)	(Mg/m^3)	(Mg/m^3)	(%)	(I.D.)
TP1	S1	SAL	(Undistu	rbed samp	le recovery	/ not possil	ble)						23.0%	Topsoil
TD1	62	Synergist	145	95	60	0.850	2.393	2.230	1.543	1.380	1.867	1.670	11.8%	Lake
191	52	SAL	(Back calculation from SAL moisture content results)						1.532	-	1.853	-	11.0%	Alluvium
TD1	52	Synergist	110	100	40	0.887	1.930	1.830	1.043	0.943	2.370	2.143	10.6%	
161	35	SAL	(Back ca	lculation fro	om SAL ma	oisture con	tent results)	1.032	-	2.345	-	9.4%	
TP1	S4	SAL	(Undistu	rbed samp	le recovery	v not possil	ble)						15.0%	
трр	52	Synergist	110	95	45	0.818	1.692	1.588	0.874	0.770	1.859	1.637	13.5%	Glacial
162	52	SAL	(Back ca	lculation fro	om SAL ma	oisture con	tent results)	0.847	-	1.801	-	10.0%	
TD 2	C1	Synergist	145	95	60	0.901	2.355	2.188	1.454	1.287	1.759	1.557	13.0%	
185	51	SAL	(Back ca	lculation fro	om SAL mo	oisture con	tent results)	1.416	-	1.713	-	10.0%	

Stage 1 Physical / Index Property Test Results

Permeability (Ring) Test Calculations Record Sheet

Trial Pit	Depth	Layer	Ring Area	1st Litre	2nd Litre	3rd Litre	Flow Rate	Permeab-		
	l	Location		Time	Time	Time		ility		
(I.D.)	(mbgl)	(I.D.)	(m ²)	(secs)	(secs)	(secs)	(I/s)	(I/s/m ²)*		
				39			0.026	0.706		
TD1	0.10	C1	0.0262		45		0.022	0.612		
161	0.10	51	0.0505			65	0.015	0.424		
	l				Average		0.020	0.555		
Other la	Other layers unsuccesful for method used									

Permeability (Base Pumping) Test Calculations Record Sheet

Trial Pit	Depth	Layer Location	Base	Area of Exc Groundwat	Max. Pump Flow Rate	Min. Permeab- ility		
(I.D.)	(mbgl)	(I.D.)	(mm)	(mm)	(mm)	(m ²)	(I/s)	(l/s/m ²)*
TP1	1.65 - 1.75	S4	1550	1450	100	2.548	1.38	0.543

T1/S1

Dark brown slightly slightly gravelly sandy TOPSOIL with rootlets noted. Gravel is fine rounded to sub-rounded of mixed lithologies.

T1/S2

Light orangey brown gravelly SAND. Gravel is medium to coarse angular to sub-rounded of mixed lithologies.

T1/S3

Soft orangey red sandy slightly gravelly CLAY. Gravel is fine to medium sub-rounded of mixed lithologies.

T1/S4

Orangey red clayey slightly gravelly SAND. Gravel is fine to coarse sub-rounded to angular of mixed lithologies.

T2/S1

Light orangey brown slightly clayey gravelly SAND. Gravel is angular to rounded of mixed lithologies.

T3/S1

Light orangey brown slightly clayey gravely SAND. Gravel is angular to sub-rounded of mixed lithologies.

TWhere a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Where a sedimentation test was not carried out, this ligure represents total lines, i.e., particles of diameter less than 63 microns

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 micronis

7 Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

7 Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

F Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns-

Stage 1 Chemical / Contamination Test Results

SA Custome	, Relevance: r Relevance:	342656 Northcorr	ect (NCIC	5]					
Soil Organophosphorous	insecticides	Analysed	es Soll						
	_	Custor	SA her Sampl D	L Reference le Reference elo Samplod	382656 001 TP1/S1 13-MAR-2014	382656 002 TP-1/52 13-MAR-2014	382656 003 TP1/S3 13-MAR-2014	382656 054 TP1/54 13-MAR-2014	362658 005 TP2/51 13-MAR-2014
Determinand	Mathod	Tost Sample	LOD	Units					
Azinphos methyl	T15	AR	0.01	maka	<0.01	<0.01	<0.01	<0.01	<0.01
Diazine	T16	AR	0.01	mgAg	<0.01	<0.01	<0.01	<0.01	<0.01
Dichlorvon	T16	AR	0.01	mp/kg	+0.01	~0.01	-0.01	-0.01	<0.01
Dimethoole	T16	AR	0.01	mgAg	<0.01	<0.01	<0.01	<0.01	<0.01
Fenerollion	T16	AR	0.01	mg/kg	<0.01	<0.01	+0.01	<0.01	-0.01
Malathion	T16	AR	0.01	mgAg	<0.01	<0.01	<0.01	<0.01	<0.01
Movimplices	T16	AR	0.01	mgAg	-0.01	+0.01	+0.01	<0.01	<0.01
Parathion	T16	AR	0.01	mgAg.	<0.01	<0.01	<0.01	<0.01	<0.01
Pinniphos mittiyl	T16	AR	0.01	mgAg	<0.01	<0.01	<0.01	<0.01	<0.01

Sol

SAL Reference: 382656 Customer Reference: Northconnect (NCKS)

			SA	L Reference	382656 006
		Custom	er Sampl	e Referance	TP3/S1
			D	ste Sampled	13-MAR-2014
Determinand	Method	Test Sample	LOD	Units	
Azinphos methyl	T16	AR	0.01	mg/kg	<0.01
Diazinon	T16	AR	0.01	mg/kg.	<0.01
Dichlorvos	T 16	AR	0.01	mg/kg	<0.01
Incihoale	T16	AR	0.01	mg/kg	<0.01
enilrothian	T16	AR	0.01	mg/kg	<0.01
Malathion	T16	AR	0.01	mg/kg	<0.01
Meymphos	116	AR	0.01	mg/kg	<0.01
Parathion	T16	AR	0.01	mphg	<0.01
lydiam sodgimin ⁽¹⁾	T16	AR	0.01	malka	<0.01

Analysed as Soil

SAL R Customor R	eferance. eferance:	382656 Northconne	et (NOKS)	1					
Soll		Analysed a	a Soil						
Organochiorine Insectio	Ides								
-			SA	L Reference	382656 001	382656 002	382856 003	382656 004	382656 005
		Custon	nar Sampl	a Reference	TP1/S1	TP1/S2	TP1/53	TP1/54	TP2/81
			D	ste Samplod	13-MAR-2014	15-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-2014
Determinand	Method	Test Sample	LOD	Units					
Aldrin	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Chilordane	TIB	AR	0.01	mgikg	<0.01	+0.01	*0.01	<0.01	<0.01
DDD	115	AR	0.01	mpAge	10.0>	<0.01	<0.01	-0.01	<0.01
DOE	T16	AR	0.01	mgikg	<0.01	<0.01	<0.01	<0.01	<0.01
TOOT	T16	AR	0.01	maka	<0.01	<0.01	+0.01	<0.01	<0.01
Dieldrin	T16	AR	0.01	maka	-0.01	<0.01	<0.01	<0.01	<0.01
Endosulphan	T16	AR	0.01	malkg	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin	T16	AR	0.01	mpkg	+0.01	<0.01	<0.01	<0.01	<0.01
Heptachior	T16	AR	0.01	malkg	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor epoxide	T16	AR	0.01	mglag	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachlorobenzene	T1	AR	0.01	mgiliig	<0.01	<0.01	40.01	<0.01	<0.01
Hexachiorocyclohexane	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01

SAL R	aference:	382656			
Customer R	leference:	Northconne	cl (NCKS)		
Sell		Analysed a	a Sol		
Organochiorine Insectio	ides				
	_		SA	L Reference	382656 008
		Custon	ner Sampl	e Reference	TP3/61
		_	Di	te Sampled	13-MAR-2014
Determinand	Method	Tost Sample	LOD	Units	
Alann	T16	AR	0.01	makg	+0.01
Chiordiane	T16	AR	0.01	mg%g	<0.01
DOD	T18	AR	0.01	mg/kg	+0.01
DDE	T16	AR	0.01	matig	<0.01
DOT	T16	AR	0.01	mphp	<0.01
Dieldrin	T16	AR	0.01	mp/kg	<0.01
Endosulphan	T16	AR	0.01	mp/kg	<0.01
Endrin	T16	AR	0.01	mg%g	+0.01
Heptechlor	T16	AR	0.01	mpling	<0,01
Heptachlor eposide	T16	AR	0.01	mgfkg	<0,01
Hexachlorobenzene	Tf	AR	0.01	mg%g	<0.01
Maxachine perinterana	T16	AR	0.01	maka	+0.01

SAL Referen	nce: 38265	Mi (h)	12.87			
Castomer Henoro	nce; working	connect fixe	unar			
Soll	Analy	sed as Sol				
Sami-Volatila Organic Compo	unds (USE	PA 625)				
			B.A	L Reference	382656 006	382656 007
	_	Custor	ner Samp	le Reference	TP3/S1	SVOC Blank
	-		D	ate Sampied	13-MAR-2014	13-MAR-2014
Determinand	Melhod	Test Sample	LOD	Units	-	
Phenol	T18	AR.	0.1	mgAg	+0.1	×0.1
Bis (2-chioronDigi) attain	T16	AR	0.1	mgAg	<0.1	40.1
2-Chlorophanol	116	AR	0.1	mgAg	«D.1	<0.1
1,3-DicNorobenzene	TIE	AR	0.1	=gAg	+0.1	<0.1
1,4-Dichlorobenzene	716	AR	0.1	mgAg	40.1	*0.1
T_2-DigNorobenzeme	116	AR	0.1	mana	+0,1	40.1
2-method object	T16	AR	0.1	make	+0.1	=0.1
34-Methylphenol	Til	AR	0.1	mgAg	+0.1	<0.1
Hexachiorpethane	T16	AR	0.1	molid	=0.1	×0.1
Nilrobenzene	T16	A.F.	6.1	maha	<0.1	<0.1
Isophorone	TIE	AR	0.1	mphg	+0.1	-0.1
2-Nihophendi	T16	AR	0.1	mg/g	<0.1	<0.1
2,4-Dimethylphenol	T16	AR	0.1	mg/kg	+0.1	<0.1
Bis (2-chloroethoxy) methane	T16	AR	0.1	mg/kg	40.1	=0.1
2,4 Dichlorophenol	116	AR	0.1	mghg	40.1	1,0+
1,2,4-1 nchiorobenzenia	118	AR	0,1	mang	40.1	1.00
A Chienesiline	TIS	AR	0.1	make	40.1	-0.1
Hexachiorobuladiene	T16	AR	0.1	molta	<0.1	40.1
4-Chloro-3-mithylphenol	T16	AR	0.1	mafina	<0.1	<0.1
2-Methylmophihalene	T16	AR.	0,1	mphp	40.1	<0.1
Hexachiorocyclopeniadiene	T16	AR	0.1	mpliq	-0.1	-01
2,4,6-Trichlorophenol	T18	AR	0.1	mg/kg	=0.1	-0.1
2,4,5-Trichlorophenol	T16	AR	0.1	mg/kg	-0.1	<0.1
2-Chlororughthalene	T16	AR	0.1	mana	=0.1	<0.1
2-Nitroanitine	T18	AR	0.1	mplip	- 40.1	-40,1
Dimethyl phihalate	T16	AR	0.1	mgAg	-0.1	40.1
2,6-Dinitrolaluene	T16	AR	0.1	mplep	-0.1	-0.1
Acenaphihylene	116	AR	0.1	mgmg	1.00	40.1
Adenaphreno	116	AR	0.1	mang	101	
2 4 Dicimonanal	718	AR	0.1	moleo		dit
Dibentofunan	T18	AR	0.1	moliko	+0.1	40.1
2.4-Dinitrololuene	T18	AR	0.1	malka	<0.1	<0.1
4-Nitrophenol	115	AR	0,1	mp/kg	<0.1	+0.1
Diethyl phiholate	T16	AR	0.1	mafilia	-0.1	40.1
Fluorene	TIG	AR	0.1	mpkg	1.0>	-0.1
4-Chlorophenyl phenylether	T10	AR	0.1	mpkg	<0.1	41
4-Nitroaniline	T16	AR	0.1	mg/kgm	+0.1	+0.1
Azobenzene	T16	AR	0.1	mghg	<0.1	<0.1
4-Bromophenyl phenyiniher	T16	AR	0.1	mphg	1.0+	×0,1
fieladviorobenzene	116	AR	0.1	mang	40.1	+0.1
Diversitivene	110	AR	0.1	mode	101	1.02
Anthracene	TIS	AR	0.1	maka	+0.1	*0.1
Carbnzole	T16	AR	0.1	maika	<0.1	<0,1
Di-n-butylphthalale	T16	AR	0.1	g/gm	+0.1	<0.1
Rupranthene	T16	AR	0.1	mgAg	<0.1	<0.1
Pyrene	T16	AR	0,1	mg/kg	<0,1	=0.1
Butyl benzylphthálale	T16	AR.	0.1	mgAg	<0.1	<0.1
Benzo(a)Anthracene	T16	AR	0,1	mg/kg	+0.1	<0.1
Chrysein	T18	AR	0.1	mgAg	<0.1	-0.1
Bis (2-ethylhexy()phthelate	T16	AR	0,1	adig	=0.1	<0.1
Di-n-octyphtheleie	T16	AR	0.1	mg/kg	40,1	+0.1
Benzo(b/k)=luoranthene	116	AR	0.1	mg/kg	40.1	40.1
cerula(a)ryrana	Tie	AR	0.1		(0.)	-0.1
Diberzolah)Anthracene	T16	AR	0.1	maha	10.1	+0.1
BenyolahiPerviene	Tie	AR	0.1	marka	<0.1	<01
and the second second						

SAL	Reference	0: 382656	

Semi-Volatile Organik: Compo	nundis (USC	PA 625)							
			SA	L Reference	382656 001	382656 002	382656 003	382656 004	382656 005
		Custor	nier Sempl	e Reference	TP1/S1	TPUS2	TP1/\$3	TP1/54	TP2/51
			De	ite Sampled	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-201
Determinand	Method	Test	LOD	Units			-		
Phenol	Tit	AR	0.1	mgiky	<0.1	+0.1	+0.1	+0.1	+0.1
Eis (2-chioroethyl) either	T18	AR	0.1	mpha	<0.1	<0.1	40.1	+0.1	+0.1
2 Chierophenel	THE	AR	0.1	mgikg	<0.1	<0.1	<0.1	+0.1	<0.1
1,3-Dichlorobenzene	T16	AR	0.1	mg/kg	<0.1	40.1	40.1	-40.1	*0.1
1,4-Dichlorobenzene	T10	AR	0.1	mgikg	<0.1	<0.1	+0.1	411	<0.1
1,2-Dichiorobenzene	TIG	AR	0.1	mpikg	<0.1	<0.1	40.1	40.1	40.1
Bis (2-chloroisopropyl) ether	T10	AR	0.1	mgAg	<0.1	<0.1	+0.1	-0.1	<0.1
2-methyl phanol	116	AR	0.1	mgag	<0.1	40.1	40.1	40.1	40,1
Jan-Melpyphinol	710	AR	0.1	mailua	=0.1	-0.1		40.1	
Nitechangen	716	AP	0.5	moño	c0.1		-01	40.1	e0.1
Isocharane	T16	AR	0.1	maika	\$0.1	-01	+0.1	-0.1	50.1
2-Nirochenol	716	AR	0.1	molka	<0.1	40.1	-01	40.1	<0.1
2,4-Dimethylphenol	T16	AR	0.1	mg/kg	<0.1	-0.1	40.1	40.1	40.1
Bis (2-chloroelhoxy) methane	T16	AR	0.1	marka	<0.1	40.1	<0.1	<0.1	<0.1
2,4-Dichlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	-01	<0.1	<0.1
1,2,4-Techiorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	-0.1
Naphthalene	T16	AR	0.1	ing/kg	<0.1	<0.1	<0.1	<0.1	<0.1
4-Chieroaniline	T16	AR	0.1	mg/kg	40.1	<0.1	40.1	<0.1	<0.1
Hexachiorobuladiene	T16	AR	0.1	maika	<0.1	<0.1	<0.1	<0.1	<0.1
4 Chioro 3 melhylphenol	T16	AR	0.1	mgAg	40.1	-0.1	+0.1	40.1	-0.1
2-Methylnaphthalene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nexachiorocyclopiniatiene	T16	AR	0.1	mg/hg	<0.1	40.1	<0.1	<0.1	40,1
2,4,6-Trichlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	-0.1	<0.1	<0.1
2,4,5-Trichlorophenol	T16	AR	01	mphg	40.1	40.1	-0.1	<0.1	-40.1
2-Chloronaphthalene	T16	AR	0.1	mg/kg	<0.1	<0.1	-0.1	<0.1	-0.1
2-Nitroaniáne	116	AR	0.1	mgalg	<0,1	<0.1	40.1	40.1	<0,1
Cenebry prinalate	110	AR	0.3	mg/ng	1.00	-0.1	-0.1		
Accordibulant	TIG	AP	0.1	maha	1,02	1.00	-01	40.1	-01
Acenschibene	716	AR .	0.1	malka	=0.1	+0.1	:01	:0.1	ců I
3.Nimaniine	T16	AR	0.1	malka	<0.1	<0.1	-01	<0.1	+0.1
2.4-Dinitrachengi	716	AR	0.5	malka	=0.1	-01	=0.1	40.1	<0.1
Dibenzoluran	T16	AR	0.1	ma/kg	<0.1	+0.1	<0.1	<0.1	<0.1
2.4-Dinitratoluene	T16	AR	0.1	maßa	<0.1	+0.1	<0.1	<0.1	<0.1
4-Nitrophenol	T16	AR	0.1	mg/kg	<0.1	40.1	<0.1	40.1	<0.1
Diethyl phthaiste	T16	AR	0.5	mg@g	<0.1	*0.1	<0.1	40.1	<0.1
Fluorene	T16	AR	0.1	mgAg	<0.1	<0.1		<0.1	<0.1
4-Chiorophenyl phenyleither	T16	AR	0.1	mailing	<0.1	-42.1	40.1	40.1	<0.1
4-Nilroaniline	T16	AR	0.1	mpikg	<0.1	≪0.1	40.1	<0.1	<0.1
Azobenzene	T16	AR	0.1	mpAg	<0.1	40.1	-0.1	<0.1	<0.1
4-Bromophenyl phenylether	T18	AR	0.1	mg/kg	40.1	<0.1	+0.1	40.1	<0.1
Hexachlorobenzena	796	AR	0.1	mgAg	-0.1	-0.1	-0.1	40.1	<0.1
Pentachicrophenol	118	AR	0.1	mging	41	40.5	40.1	40.1	<0.1
helberge	116	AR	0.1	make	41	40.1	1.00	40.1	
Cartosolo	110	AD	0.1	mang	-	-0.1	40.1	40.1	40.1
Dundubilititatele	Tto	AP.	0.1	10040	41	40.1	d1 1	di i	-011
Favoranihene	T10	AP	B.1	moke	-01	-0.1	40.1	40.1	+0.1
Purena	T15	AR	0.1	make	40.1	40.1	40.1	\$0.1	411
Buly benzyichthalate	T16	AR	0.1	moke	\$2.1	40.1	+0.1	40.1	<0.1
Benzo(e)Ardracana	T16	AR	0.1	maka	<0.1	<0.1	40.1	<0.1	<1.1
Chrysene	TIE	AR	0.1	mgAg	-0,1	<0.1	<0.1	40.1	<0.1
Bis (2-ethylhexyl)phthalate	TIS	AR	0.1	mg/kg	<0.1	<0.1	+0.1	<0.1	=0.1
Di-n-octylphthalate	T18	AR	0.1	mg/kg	<0.1	<0.1	+0.1	+0.1	<0.1
Benzo(b/k)Fluctranihene	T16	AR	0.1	mp/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzola/Pyrene	T18	AR	0.1	mg/kg	<0,1	<0.1	-0.1	⊲0.1	⊲0.1
Indeno(123-cd)Pyrene	T16	AR	0.1	mphg	41	<0.1	<0.1	<0.1	<0.1
Dibenco(ah)Anihracene	T18	AR	0.1	mphg	<0.1	<0.1	<0.1	-40.1	-0.1
Bassalah (Bassana	710	ÁB				-0.4	1.0	1.00	10.5

SAL Reference: 382656

Customer Reference: Northconnect (NCKS)

Sell REC Ltd 082EK		Analysed	an Snil						
			SA	L Reference	382656 001	382656 002	382656 003	382658 004	382656 005
		Cusion	nor Sampl	e Reference	TP1/51	TP1/52	TP1/53	TP1/54	TP2/51
			D	ate Sampled	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-2014
Determinand	Method	Test Sample	LOD	Units	-				
Anerit	782	A40	2	mg/kg	6	6	6	4	7
Cadmium	T82	MO	1	inging	91	+1	<1	<1	<1
Chromium	782	A40	1	mgikg	28	29	40	37	38
Chromium VI	782	A40	- T -	mg/kg	41	- 41		1.	<1
Capper	782	A40	1	mg/kg	10	14	22	23	20
Land	782	A40	3	mailia	15	12	12	12	14
Marcury	782	A40	1	mg/kg	31	<1	e1		et
Nickel	T82	A40	1	mgikg	13	20	34	35	21
Selenium	T82	A40	3	mgikg	0	-3	<3	<1	<3
SO4(Total)	T82	A40	0.01	%	0.12	0.02	0.02	0.02	0.02
SO4(2.1)	T112	A40	10	mg/i	12	<10	18	14	14
Zine	182	A40	1	mgAg	38	71	63	71	56
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1	<1	<1	4
Phenois(Mario)	T4	AR	1	mg/kg	<1	41	<1	<1	<1
pH	17	A40			6.3	6.1	4.9	5.2	5.1

SAL	Reference:	382656	l
Castomer	Reference:	Northconnect (NCKS	5

Soil		Analysed	as Sol		
REC Ltd ODZEK					
			SA	L Reference	382656 006
		Caston	ver Sampl	ie Reference	TPMS1
		_	D	ate Sampled	13 MAR-2014
Determinand	Method	Test Sample	LOD	Unite	
Arsenic	T82	A40	2	mp/kg	5
Cedmium	T82	A40	1	mg/kg	<1
Chromium	182	A40	1	mg/kg	38
Chromium VI	T82	A40	1	mg/kg	<1
Copper	T82	A40	1	mgAg	20
Lead	T82	A40	3	mg/kg	10
Mencury	T62	A40	1	mgikg	<1
Nickel	T82	A40	1	mgñg	25
Selenium	T82	A40	3	mpfkg	-3
SO4(Total)	T82	A40	0.01	<u>s</u>	0.01
SO4(2:1)	T112	A40	10	Ngm	15
Zinc	Ť82	A40	1	mahg	57
Cyanide(Total)	T4	AR	1	mg/kg	s1
Phenols(Mona)	Té	AR	1	mg/kg	<1
pH	17	A40			5.0

BAL Rotorence: 382656

Customer Reference: Northconneci (NCKS)

Soli Analysed as Soli Total and Speciated USEPA16 PAH (EK)

			SA.	Reference.	382656 001	382656 002	382666 003	382656 004	382658 005
		Custon	mr Sampl	e Reference	TP1/\$1	TP1/52	TP1/S3	TP1/54	TP2/51
			D	ate Sampled	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-2014
Determinand	Method	Method Test Sample		Units	1-2				
Naphihaiene	T140	AR	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Acemiphthylerin	T149	AR	0.01	maikg	<0.01	<0.01	<0.01	<0.01	<0.01
Acentphilhene	T149	AR	0.01	mgAg	<0.01	<0.01	+0.01	<0.01	<0.01
Fluorene	T149	AR	0.01	mgAg	+0.01	<0.01	<0.01	+0.01	<0.01
Phenanthrene	T149	AR	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Anthvacene	T140	AR	0.01	maika	<0.01	<0,01	<0.01	<0.01	<0.01
Ruoranthene	T149	AR	0.01	mplug	0.02	<0.01	<0,01	<0.01	<0.01
Pyntine	T149	AR	0.01	mp/kg	0.02	<0.01	<0.01	=0.01	<0,01
Benzo(#)Anthracere	T149	AR	0.01	mp/kg	0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	T149	AR	0.01	mgäg	<0.01	<0.01	<0.01	<0,01	<0.01
Benzo(b)/luoran/hene	T149	AR	0.01	mgikg	0,01	<0.01	<0.01	+0.01	+0.01
Benzo(k)/luoranthene	T149	AR	0.01	mg/kg	10.0⊁	<0.01	40.01	<0.01	<0.01
Benaro(a)Pyrrane	T149	AR	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(123-cd) ^{(b} yrene	T149	AR	0.01	mp/kg	+0.01	<0.01	40.01	40.01	<0.01
Dibenzo(ah)Anthracene	T148	AR	0.01	mg/kg	<0.01	+0.01	<0.01	<0.01	<0.01
Senzolahi/Perylens	T149	AR	0.01	mphg	+0.01	40.01	<0.01	<0.01	<0.01
PAHilalal	T149	AR	0.01	maAa	0.66	<0.01	<0.01	<0.01	<0.01

SAL Reference: 382656

Customer Reference: Northconnect (NCKS)

Soli Analysed as Soli Total and Speciated USEPA16 PAH (EK)

			SA	L Raferance	382656 006						
	Customer Sample Raference										
	13-MAR-2014										
Determinend	Method	Test Sample	LOD	Units	ALC: N						
Naphthalena	T149	AR	0.01	malkg	<0.01						
Acenaphthylene	T149	AR	0.01	mpilip	<0.01						
Acenaphihena	T149	AR	0.01	mp/kg	<0.01						
Fluorene	T149	AR	0.01	malkg	<0.01						
Phenanthrene	T149	AR	0.01	mp/kg	<0.01						
Anthracene	T149	AR	0.01	mpilig	<0.01						
Fluoranthene	T149	AR	0.01	mpiling	<0.01						
Pyrene	T149	AR	0.01	mphg	<0.01						
Benzo(a)Anthracene	T149	AR	0.01	mging	+0.0%						
Chrysene	T149	AR	0.01	mg/kg	×0.01						
Benzo(b)fluoranihene	T149	AR	0.01	gågm	<0.0%						
Benzo(k)Ruonanthene	T149	AR	0.01	maña	40.01						
Benzo(a)Pyrene	T149	AR	0.01	mgikg	<0.0%						
indeno(123-cd)Pyrene	T149	AR	0.01	mgAg	40.0%						
Dibenzo(ah)Anthracene	T149	AR	0.01	mgAg	<0.01						
Benzo(ghi)Perylene	T149	AR	0.01	mg/ig	<0.01						
DA (-i)tetal)	T149	AR	0.01	moño	<0.01						

SAL Reference: 382656 Customer Reference: Northconnect (NCKS)

Soll Analysed as Soll Talal Patroleum Hydrocarbons Banded (CB-C16, C16-C12, C12-C16, C16-C21, C21-C35)

		Custoe	BA Ner Samp 1 De	L Reference le Reference ate Samplad	382656 901 TP1/S1 13-MAR-2014	382656 002 TP1/S2 13-MAR-2014	382856 003 TP1/S3 13-MAR-2014	382656 004 TP1/54 13-MAR-2014	382656 005 TP2/31 13-MAR-2014
Determinand	Muthod	Test Sarry: to	LOD	Units			_		
TPH (C8-C10	TB	AR		mg Ag	-<1	*1	12	<5	<1
TPH(C10-C12)	TB	AR	1	mg.Ag	<1	*1	<1	<1	<1
TPH(C12 CIE	TO	AR	1	of gm	<1	*1		<1	+1
TPH(C16 C21	TB	AR	1	ing Ag	-1	*1	(11) <1	<1	10.00 +1
TPH(C25 C35	TR	AR	1	gil gm	<1		+1	*1	*1
TPH (C35 C40	TR	AR		mg Ag	<1	*1	*1	<1	<1

SAL Reference: 382656 Customer Reference: Northconnect (NCKS)

Soli Analysed as Sol Total Petroleum Hydrocarbons Banded (C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)

		Custom	SA Ner Sampl Di	L Reference o Reference ato Sampled	382856 008 TP3/S1 13-MAR-2014
Determinand	Method	Tost Sample	LOD	Units	
TPH (C8-C10)	TB	AR	1	mgAg	<1
TPH (C10-C12)	T8	AR	1	mg/igm	+1
TPH (C12-C16)	TB	AR	1	mgAg	<1
TPH (C16-C21)	T8	AR	1	mg/kg	(13) = 1
TPH (C21-C35)	TB	AR	1	mg/kg	41
TPH (C35-C40)	TB	AR	1	mg/kg	-1

Customer Reference: Northconnect (NCKS)

Sall Analysed as Sol

			SA	L Reference	382656.001	382656 002	382656 003	382656 004	382656 005	
		Custor	ier Sampl	e Reference	TP1/91	TP1/52	TP1/53	TP1/34	TP2/81	
			0	te Sampied	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-2014	13-MAR-201	
Determinand	Mathod	Test Sample	LOD	Units						
Dictriorodifuoramethane	T54	AR	5	ugikg	<\$	<5	+5	<5	4	
Chicromethane	T54	AR	5	page	-6	<5	<	<5	<5	
Vinul chioriste	T54	AR	5	ugho .	4	<0	-5	-45	5	
Bromomethane	154	AR.	5	paka	<5	<5	\$	<5	4	
Chicrostfinate	154	AR	5	unko	<5	+5	-5	4	<5	
Trichlorofluoromethane	T54	AR	- 5	VORD	<5	<5	<5	<5	- 6	
1.1-Dictricroellinderia	T54	AR	5	uping	45	45	-45	<5	<5	
Dichloromethane	T54	AR	SO	upAg	<50	<50	<50	<50	<50	
Trans-1.2-Dichloroothene	T54	AR	5	ugfkg	-6	*5	45	<5	<5	
1.1-Dichloroethane	T54	AR	5	uaka	<5	-5	+5	<5	<5	
Cis-12-Dichiomethylena	1/54	AR		unka	-65		- 45	<5	<5	
2.2-Dichlorosonosana	154	AR	5	uaho	-	15	+5	<5	<5	
Chloraform	154	AR	5	ughe	-15	- 65		<5	<5	
Remochicementhose	TA	AP	5	unda	et	d	+5			
1.1.5.Techingenerate	754	AD		under	15	18	cti	15	45	
1.5. Disbloomerane	104	AP	6	1000	11	4	45	10		
1,1-сасполоргорини	154	AR		uging						
Carbon tetrachionde	104	AR		PDrg	4	42			45	
1.2-Oichiorosithane	154	AR		häyä	100.0	40	1130-1	100-4	100 -1	
Benzene	154	AR	1	HOVE	Con cl	dearest.	10041	tionel	Total	
1,2-Olchioropropanit	154	AR	5	häyö			48	15	15	
1,1,2-Trichlosoeihylene	754	AR.	5	uging	4	9	«D		5	
Bromodichipromethane	154	ARC	3	1/210		45	40	0	*5	
Dibromomethane	154	AR	5	hidya	4	4	45		<5	
Cis-1,3-Dichloropropene	T54	AR	5	Light	4	45	- 45		45	
Toluene	754	AR;	1	ugikg	<1	51	-11	=1	<1	
Trans-1,3-Dichloropropene	154	AR:	5	ughg	-	15	-45	45	-15	
1,1,2-Trichlargethene	754	AR	5	Hay a		-65	+5	<5	<5	
1,3-Dichloropropane	154	AR:	5	ugha	4	9	<8		+5	
Tetrachioroethane	154	AR	5	µg/kg	<5	4	-45	<5		
Chiorodibromomelhane	T54	AR	5	ughg	4	4	<\$	<5	- 15	
1,2-dibromoethane	154	AR	5	pgkg	4	- 6	*5	<5		
Chiorobenzene	154	AR	5	ughg	-5	- 45	<5	<5	5	
1,1,1,2-Teirachloroethane	754	AR	5	µgAg		-5	<5	-45	-5	
ElhylBenzene	754	AR	1	HOVE	<1	<1	<1		<1	
MP Xylene	154	AR.	1	H8/6	<1	41		- 41	<1	
O Xylene	T54	AR	1	ugikg	<1	4	<1			
Stymne	T54	AR	5	ug/kg	0	45	-5	\$	<5	
Bromoform	T54	AR	5	Have	45	4	-45	6	<5	
Isopropyl benzene	754	AR	5	ugikg	-6	-15	45	\$	<5	
1,1,2,2-Tetrachloroethane	T54	AR	5	haya	-45	-5	45	5	<5	
1,2,3-Trichloropropane	T54	AR	5	µg/kg	-6	-5	<5	-	<5	
n-Propylbenzene	T54	AR	5	Have	4	<5	45		<5	
Bromobenzene	T54	AR	5	ug/kg	4	<5	4	\$	-65	
1,3,5-Trimethybenzene	T54	AR	5	Pana	4	-45	5		<5	
T-Bulyibenzane	T54	AR	5	uping	4	<5	\$	6	<5	
1,2,4-Trimethybenzene	T64	AR	. 5	HORG	4	-5	45	4	+5	
S-Butylbenzene	T54	AR	5	upika	4	<5	-6	6	-5	
e-lageropyfioluene	164	AR	5	unfig	4	+5	45	6	+5	
7-Chiorololuene	T54	AR	5	ugan	4	<5	45	6	- 6	
4-Chlorololuene	754	AR	5	upfin	d	-5	- 6	6	-45	
1 3-Dichlombergenn	TSI	AR	6	upha	et	45	45		-5	
1.4.Fichlootherman	154	AP	6	upan	24	45	45	c#.	et	
1.4 51510 50 516 10	1.00	in		69-9						

SAL Rule	prence: 38	2656			
Customer Refe	stance: No	dhconneci	(NCKS)		
	-				
Velatile Consult Consult	An	erysed as S	NO#		
weranne organic compound	on InstigA	1241			
		-	SA	Reference	382656 006
		Custon	ver Sampl	e Reference	TP3/81
	-		D	to Sampled	13-MAR-2014
	1				
Determinand	Mathod	Sample	LOD	Units	
Dictiforedifuoramethane	T54	AR	5	page	-45
CNoromethane	T54	AR	5	uphg	~5
Vinyi chioride	T54	AR	5	uphg	- 15
Bromomethane	T54	AR.	5	ygNg	<5
Chloroelhane	T54	AR	5	upkg	
Trichlorollucromethane	T54	AR	5	yohg	*5
1,1-Oichloraethylane	154	AR	5	1949	- 45
Dichloromethane	754	AR	50	- uphg	+50
Trans-1.2-Dicteoroethena	154	AR	5	- uphg	-45
1,1-Dichloroethane	154	AR	5	ughg.	46
Cis-1,2-Dichloroethylene	154	AR	5	1949	-65
2,2-Oichloropropane	154	AR	- 6	yota	<5
Chioralarm	T54	AR	5	ughg .	+5
Bromochloromethane	154	AR	5	rphg	4
1.5,1-Trichloroethane	T54	AR	5	ighg	- 3
1,1-Dichloropropene	T54	AR	5	Holes	
Carbon tetrachioride	T54	AR	5	palig	- 65
1,2-Oichiorsemane	154	AR	5	höyd	9
Banzono	T54	AR		1919	00148
1,2-Dichlorapropane	T54	AR	3	1949	
1,1,2-Trichloroethylene	T54	AR	3	1949	
Bromodichiaromethane	154	AR		1949	4
Dibromornelhane	154	AIC	3	1919	4
Cas-1,3-Dichloropropene	154	AR		10/0	45
Toluene	T54	AR.	1	1919	4
Trana-1,0-Oichicropropene	754	AR:	3	PRAG	-12
1,1,2-Inchlorbetriane	194	APC	3	POND	62
1,3-Dichipropropane	154	AR		howa	40
Chicosofic contraction	754	AR.	2	provide	
1.2.discononicitatione	124	40		unda.	-0
Chirobenzane	TM	49	6	-pgrag	
1.1.1.2-Tetrachiomelhane	TH	AR	5	uofin	45
EltyBanzana	154	AR	1	1050	6
MP Xviene	TN	AR	1	Loho	st
O Xylane	154	AR	1	Have	ei
Styrene	T54	Alt	5	Linka	-
Bromolorm	T54	RA	5	and the second	-6
isopiopyl benzene	754	AR	5	ugha	4
1.1.2.2-Tetrachloroethane	T54	AR	5	Laka	-65
1,2,3-Trichloropropane	T54	RA	5	ugka	4
n-Propybenzene	T54	AR	5	ugha	45
Bromobenzene	T54	AR	5	ugha	45
1,3,5-TrimeDylbenzene	T54	AR	5	Light	<5
T-Bulybonzene	T54	AR	5	ughg	-5
1,2,4-Trimelhylbenzene	754	AR	6	ugika	<5
S-Butybenzene	T54	AR	5	Vglag	4
p-lisopropylialuene	754	AR	5	upikg	-5
2-Chlorolalusne	T54	AR	5	Paka	d
6-Chlorotoluene	T54	AR	5	ugikg	-5
1,3-Dichiorobenzene	T54	AR	5	ugha	-5
1,4-Dichlorobenzane	T54	AR	5	pakg	4
1.2.Dichioschenisere	T54	AR	5	Lighg .	4

Scale of Rock Strength

Description	Field Test	Uniaxial Compressive Strength (UCS) - (MPa)	Characteristic Rocks
Very weak	Crumbles under sharp blows with geological pick point, can be cut with pocket knife	<1.25	Weathered and weakly compacted sedimentary rocks (chalk, rock salt)
Weak	Shallow cuts or scraping with pocket knife with difficulty, pick point indents deeply with firm blow	1.25 to 5	Weakly cemented sedimentary rocks (coal, siltstone, also schist)
Moderately weak	Only thin slabs, corners or edges can be broken off with heavy hand pressure	5 to 12.5	Moderate cementation of sedimentary rock
Moderately strong	Knife cannot be used to scrape or peel surface, shallow indentations under firm blow from pick point	12.5 to 50	Competent sedimentary rocks (sandstone, shale, slate)
Strong	Hand held sample breaks with one firm blow from hammer end of geological pick	50 to 100	Competent igneous and metamorphic rocks (marble, granite, gneiss)
Very strong	Requires many blows from geological pick to break intact sample	100 to 200	Dense fine-grained igneous and metamorphic rocks (quartzite, dolerite, gabbro, basalt)
Extremely strong	Rock rings on hammer blows. Only broken by sledge hammer	>200	Very dense fine-grained metamorphic rocks (quartzite, dolerite, gabbro, basalt)

Scale of rock strength, based on UCS values (modified from BS 5930 1999; BSI, 1999).

Scale of rock strength

TP1(3)

TP1(4)

TP1(1)

TP1(2)

Stage 1 Site Investigation Photographs

TP2(1)

TP2(2)

TP3(1)

TP3(2)

TP3(3)

Appendix D – Stage 2 Ground Investigation Data

		ERS Westerhill Road Bishopbriggs	Site Name	Fourfields, Bo	oddam, Peterhead			Contract No
	rc	Glasgow G64 2QH	Client	North Connec	۲ ۲			955001
E		Tel: 0141 772 2789 Fax: 0141 762 0212	Consultant	ERS	л. 			
							<u>c</u>	
		n E			AND BUREHUI	LE RECORD	5	
	SOIL SAMPL	ES						
	U (x) Un	disturbed driven	tube sample,	, 100mm nomi	nal diameter unless not	ted; (x) No. of blows	s to drive sampler	
	P Ur TW Th	idisturbed pushed	d piston sam	ple, 100mm n	ominal diameter unless	noted		
	CBR CE	BR mould sample	2					
	LB La	irge Bulk sample						
	T Sn	nall disturbed san	nple plo (Many co	ntainare)				
	J Am	iber Jar sample	pie (many co	fildiners)				
	V Via	al sample						
	IN-SITU AND	FIELD TESTS						
	SPT=X a/b (n	en) Standard I	Penetration 1	Fest (split spor	on sampler)			
	CPT=X a/b (p	en) Cone Pen	etration Test	(solid cone)				
		Note: 'a' is (pen) is tes	st drive pene	tor seating dri	ve; 'b' is blows/75mm fo han 300mm	or test drive;		
	CBP	California	Bearing Rati	in Test				
	K	Field Perm	neability Test	t				
	V,PP PID	Field Vane Photo-Ioni	e Test zation Detec	tor				
		T HOLO-IOHA						
	CORE RECO	VERY AND ROC	K QUALITY					
	TCR T	otal Core Recove	ry (%)					
	SCR S	olid Core Recove lock Quality Desid	ry (%) mation (%)					
	lf Fra	acture Index	J					
		TER						
	W Grou	indwater sample						
	⊈ Grou	undwater encount	ered					
	⊻ Dept	th to which ground	dwater rose					
	LEGENDS							
	Material Lege	nde are in accord	lance with B	S 5030·1000 (see attached)			
				5 5350.1333 (and a set of
	# before a des	scription indicates	s that it is bas	sed on the Dri	ller's record only. Other	descriptions based	d on visual assessme	ent only.
		NS (BACKEILL)						
	INOTALLATIC							
				000				
		Concrete		0004	Gravel		Bentonite or Grou	ıt
	<u> </u>							
	XXXXX							
		Spoil / Fill			Solid Pipe		Wooden Plug	
		•					trooden nug	
	· · · · · · · · · · · · · · · · · · ·			P				
		Sand			Slotted Pine			
		Sano			Sidiled Fipe			
	DIMENSIONS	3			TRIAL PIT FACES		А	
	All dimension	s in metres unles	s otherwise s	stated			В	
							С	

1110			ERG Warrente Board	Site Name	Fourfields, B	oddam, Peter	head		Contract No
	-	-	Dishophrtggs Chargone	Client	North Conne	ct			
1	\mathbf{P}	5	74 0341 222 2200	Consultant	North Conne	ct			955001
		-	Fasc 0141 790 0212 Info@wsternetlaßer.com	Contractor	ERS				
Exploratory Hole	Final Depth	Hole Type	Start Date	End Date	Easting	Northing mN	Elevation mAOD	Comments	Figure No.
BH01	6.00	RO	08/10/2014	08/10/2014	412060.655	841457.963	62.18		01
BH02	5.00	RO	07/10/2014	09/10/2014	411969.219	841482.929	64.72		02
BH03	12.50	RO	07/10/2014	09/10/2014	412094.035	841338.368	65.54		03
BH04	3.00	WLS	08/10/2014	08/10/2014	411765.669	842128.200	55.35		04
TP04	1.90	TP	07/10/2014	07/10/2014	411752.013	841684.808	74.09		05
TP05	2.90	TP	07/10/2014	07/10/2014	411747.832	641908.244	60.94		06
TP06	2.50	TP	07/10/2014	07/10/2014	411823.407	842219.115	50.63		87
TP07	2.70	TP	07/10/2014	07/10/2014	411734.130	842095.230	63.96		06
RES01	0.00				412078.854	841262.108	69.19		09
RES02	0.00				412036.053	841295.958	71.27		10
RES03	0.00		-		411995.337	841259.576	72.39		11
RES04	0.00				411952.425	841273.229	72.59		12
RES05	0.00				412077.544	641290.634	68.25		13
RES06	0.00				412035.576	841295.065	70.32		14
RES07	00.0				411995.253	841298.068	70.75		15
RESO	0.00				411963.903	841301.891	70.85		16
RES09	0.00				411952.669	841322.466	89.84		17
RES010	00.0				411994.111	B41324.239	69.39		18
RESOT	0.00				412033.023	841325.384	68.90		19
RES012	00.0				412075.575	841317.619	67.32		20
RES013	0.00				412070.827	841337.929	66.57		21
RES014	0.00				412030.418	841342.575	67.89		22
RES015	0.00				411992.670	841340.123	68.51		23
RES016	0.00				411949.814	841348.837	69.03		24
RES017	0.00				411948.261	841375.029	67.85		25
RES016	0.00				411989.137	841375.818	68,80		26
RES019	0.00				412025.571	841380.759	66,11		27
RES020	00.0				412066.529	841385.163	64.91		28
RES021	0.00				411689.605	841278.594	76.02		29
RES022	0.00				411891.292	841312.202	73.50		30
RES023	0.00				411891.219	841333.033	72.24		31
RES024	0.00				411893.448	841356.077	71.87		32
RES025	00.0				411896.632	841397.131	71.33		33
RES025	0.00		1.0		412061.786	841420.891	63.16		34
RES027	00.0				412021.792	841420.847	64,67		35
RES028	0.00				411985.297	841420.153	65.32		36
RES029	0.00				411950.176	841415.392	65.52		32

		e	r	S	W E Tel:	ERS esterhill Road Bishopbriggs Glasgow G64 2QH 0141 772 2789 0141 762 0240	Site Name Client Consulta	e F N Int N	ourfields Iorth Con Iorth Con	, Boddan nnect nnect	n, Pete	erhead								Contr 95	act No	
Location	n:	$\mathbf{}$	No	wth: 0414	Fax: info@e	orsremediation.com	Contracto		RS	Crown	al au	ali 60.40		In	olination: (20	Caslar	1.50		Boreh	ole No	
Dates: 0)8/10/20	14 - 08/10	0/201	14 Dr	iller(s):	<u>-</u> JL CT	Logged	0.655 BV: F	94 3P	Data	i Input	: BP	Ch	ecked Bv:	GA	Status	Scale.	1.50		Bł	-101	
		Samples	s & T	Test							STRA	TA DETA	ILS	<u> </u>	-			Level	Wa	ter	Backfi	ill
Depth	Sa	mple Type	e	In-situ	Tests	Depth					D	escription					Legend	mOD	Leve	I Dep	th Lege	enc
							Dark brown	claye	ey TOPS	OIL										F		1
0.30	в					- 0.30 -	Soft becomi	ing fir	m orange	e brown s	slightly	mottled g	rey san	dy slightly g	gravelly CL	AY with		61.88		F		4
							CODDIES. GR	averi	s subang	juiar to si	JDrour	naea tine t	o coarse	e of mixed	lithology.			-		[0.5		
			F	Pen. N	Cas. V	/at.												4	1	F		
1.00-2	U	1.00	S 3	300 6	1.00													1		⊢1.0	0	0
																	<u> </u>	-		E]• E	0
																				F		-0
			F	Pen. N	Cas. W	/at. 1.80	Soft arev sli	iahtly	sandy ar	avelly CI	ΔYwi	ith cobble	Grave	l is suband	ular to sub	rounder	H <u></u>	60.38		Ē		
2.00-3	U	2.00	S 3	300 5	2.00		fine to coars	se of	mixed lith	avelly CL lology.	.A I WI		S. Glave	i is subariy	julai to sub	iounae	u -0	-		-		
																	-0			Ę		.0
																		4		F		0
																		-		E		0
		3.00	S I	2en. N 0 >50	Cas. W 2.00	/at											<u> </u>		$ \underline{\nabla} $	-3.0	0 <u>-</u>	
						- 3.10 -	Weathered	GRA	NITE rec	overed a	s pink	and oran	ge angu	lar fine to c	oarse grav	vel.	+ -	59.08		F	ĬF	1
																	++			Ē]° -	0
																	+ +	1		Ę	1º -	0
																	+ -	F0 10		Ē		-0
From	To	TCR	SCF	R RQD	F		Medium stro	ong p enath	ink and g to weak	rey GRA	NITE.	Weatheri	ng betw angula	een 4.70m r coarse or	and 5.00n avel. Fract	n has tures:	+	1 30.10		-		-
4.00	5.00	100	65	61			close to me	dium	spaced s	subhorizo	ontal d	ipping app	proximat	ley 45°, rou	ugh steppe	d.	+	H		F		
																	+ +			Ē	ĨF	ľ
																	+ +	1		Ę		0
5.00	6.00	96	59	29	9												+ -	ł		Ē		0
																		+		F	₽₽	-0
																	+ +			F		0
																	+ -	ť		E		
							(End of Bor	ehole														
Remark	s: Soil Bo	ing Casi	na		w	ater Addeo	1		Chisel	lina			Rota	ry Casing			FI	ush De	atails			
From	То	Diame	eter (r	mm) F	rom	To A	mount F	rom	То	Time (ł	nrs)	From	То	Diamete	er (mm)	From	То	Туре		Retu	rns (%)	
0.00	3.50	14	0									0.00	3.50	140		0.00	6.00	Air M	list	10	0	_
н	lole Typ	e					Boring / Dri	illing	Progress	s		U Water Lev	/els	1		Waterst	trike			Fi	gure No	D
From	То	Туре		Drill Rig T	уре	Date	Hole Dep	pth	Casing	Depth	Мо	ming	vening	Struck	Rose T	o Tir	me (min)	Cu	t Off		01	
0.00	3.10	WLS RO	Da	ando Ter	rier	08-10-14	6.00		3.5	50	1.0	0		3.00	1.00		20.00				Sheet	
4.00	6.00	RC	M	assenza	MI6															1	of 1	

1 of 1

	1111		1.1.1	W	ERS esterhill Road	Site N	lame	Fourfields	, Boddarr	ı, Peter	rhead								Contract No
			rc		Glasgow G64 2QH	Client	t ultant	North Con	inect										955001
	×			Tel: Fax: info@e	0141 772 278 0141 762 021 rsremediation.	12 com Contr	ractor	ERS	IIIECI										Borehole No
Location	1:		North: 8414	82.928)	East: 41	1969.21	94	Groun	d Leve	l: 64.7	2		nclination:		Scale:	1:50	0	BH02
Dates: 0	7/10/20	14 - 09/10/ Samples	/2014 D & Test	riller(s):	JLCT	Log	ged By:	BP	Data	Input:			ecked By	: GA	Sta	atus: Final		avel Wa	ter Backfill
Depth	Sar	nple Type	In-situ	Tests	Dep	th				De	scriptic	n				Legen	id m	OD Leve	I Depth Legend
					-	- Dark br	own clay	ey TOPS	JIL								<u>, l</u>		
0.30	в				- 0.30	Soft to f	irm oran	ge brown	slightly sa	andy gi	ravelly	CLAY with	cobbles	and boulde	ers.		- 64 -	1.42	
					-	Giaveii	is subari	yulai lo su	IDI OUTIGE	u nine u	U CUAI:	se or mixed	litriology	•			:		
		1.00 \$	Pen. N	Cas. W	/at.	_													
1.00-2	U	1.00 0	500 5	1.00	-	-										· ·	-		
					-	-													
					Ē]											-		
			Pen. N	Cas. W	/at.												-		
		2.00 S	300 33	2.00	-2.00	- Stiff to v	ery stiff	orange br	own sand	ly sligh	itly gra	velly CLAY	with cob	oles and bo	oulder	S. 0	= 62 -	2.72	
			Pen. N	Cas. W	- /at		5 Suburg	guiui to se	biounac		o cour.		litrology	•			-		
		2.55 S	6 0 >50	2.00	2.5	⁵ Weathe	ered GRA	ANITE rec	overed as	s pink a	and ora	ange angula	ar fine to	coarse gra	ivel.	+	62 +	2.17	
					-											+ +			
					-	-										++	1		
			Pen. N	Cas. W	/at.]										+	+		3.30
		3.50 S	275 >50	2.50	-	-											+		
					Ē]										- '+			E IXX
					-	-											+		
					-	-										+	+		F #XXX
					-]										_ <u></u> + _ +			
					-	-										++	1		F 1888
					<u></u> 5.00											+	<u> </u>	9.72	<u> </u>
						(End of	Borehol	le)											
Remarks	8:			4- 0.00															
Borehole	e arilled	to 5.00m, l	but caved in	το 3.30r	n														
S	Soil Bor	ing Casin	g	w	ater Ado	led		Chisel	ling			Rotar	y Casing	I		F	lust	h Details	
From	То	Diamet	er (mm)	From	То	Amount	From	То	Time (h	ırs)	From	1 То	Diamet	er (mm)	From	n To	٦	Гуре	Returns (%)
0.00	2.00 5.00	140									0.00	2.00	140	о	0.00	5.00	A	vir Mist	100
H	ole Typ	e				Borina	/ Drilling	 Progress	 S	v	Vater L	_evels			Wate	erstrike			Figure No
From	То	Туре	Drill Rig	Туре	Date	e Hole	Depth	Casing	Depth	Morr	ning	Evening	Struck	Rose 1	Го	Time (min)		Cut Off	02
0.00	2.55	WLS	Dando Te	rrier	07-10-1	4 2.	.55		:0										Shoot
2.55 3.50	5.00 5.00	RO	Massenza	a MI6	09-10-1	- 5.	.00	2.5	iU										

1 of 1

12			1	5		El Wester Bisho	RS hill Road	Site Na	me F	ourfields	Boddam, Pete	erhead						(Contract	No
		0	r	C		Gla: G64	sgow 2QH	Client	tont N	North Con	nect							- !	95500	01
				2	int	Tel: 0141 Fax: 0141 fo@ersren	772 2789 762 0212 rediation.com	Contrac	ctor E	ERS	neci							E	Borehole	No
Locatio	n:		Nor	rth: 84	1338.3	876		East: 4120	094.03	51	Ground Lev	el: 65.54		Inclination		Scale:	1:50		BH0	3
Dates:	07/10/20	14 - 09/1 Sample	0/201/ s & Te	4 est	Driller(s): JL		Logg	ed By:	BP	Data Input	: BP TA DETAII	Ch LS	ecked By: GA	Status	s: Final	Level	Wat	er Ba	ckfill
Depth	Sa	mple Typ	e	In-si	itu Test	s	Depth				D	escription				Legend	mOD	Level	Depth L	egend
								Dark brov	vn claye	ey TOPS(DIL					$\frac{1}{2I}$ $\frac{1}{2}$ $\frac{1}{2I}$				
0.30	в						- 0.30	Soft grey	brown	slightly sa	ndy gravelly C	LAY, tendir	ng to cla	ayey sand gravel, v	with		65.24			
									Juver	is suburig			000130	, or mixed infilology						
		1 00	P S 3	en. N	Cas	. Wat.														
1.00-1.0	5 U			.00 0	1.00			-								<u> </u>		∇		° E°
			P	en. N	V Cas	. Wat.	- 1.30	Weathere	d GRA	NITE reco	overed as pink	and orang	e angul	ar fine to coarse g	ravel.	+ -	64.24	<u> </u>	- 1.30 + _c	>
		1.60	3	00 >5	50 1.60)	- · - ·	-								++	H			> 🗕 o
																+ +				> 🗖 o
																+ +	H			, 님,
																+ -	ł		ŧ į	, H.
																++	+			
								-								+ +				
							Ē	-								+ -	H		F) 0
							-									+ -	H			> 🗖 °
								-								++	4			› 🗖 •
								-								+ +				□ □ 0
							Ē	-								+ -	H		F	, .
								-								+ -	ł			, Ħ, I
								-								++	4			Ē
								-								+ +	1			, Eo
							E I										ł		F 7	° ⊟°
		TOD	000			-	5.40	Strong ng		and nink							60.14			> 🗌 o
From 5.40	10 6.90	1CR 47	15	K R	0	FI NI	- 5.70	Strong pa	le grey	anu pink	GRANITE.					+ +	59.84		E k	,
								Weak pin weak and	k and g in plac	grey GRAI ces recove	NITE. Highly w ered as coarse	eathered th angular gr	nrougho avel. Fr	out reducing streng actures: non intac	th to very t to very	+ -	H			. ⊢ ₀
							E	closely sp	aced ro	ough.						+ -	ł		F 6.00	
																++	+		F ₹	
																+ +			F ¥	
								-								+ -	H		F ₿	
							E									+ -	H		F 7	
								-								++	+		F ₹	
																+ +			E 🖁	
								-								+ -	H		F ₹	
							Ē	1								+ -	H		F ₹	
								-								++	4		F ₹	>>>>
																+ +				
								-								L+	H		F ₹	
							Ē									+ -	+		F ₹	
								-								+ + -			⊧ ₿	\bigotimes
9.50	11.00	48	23		0	NI	Ē	1								+ +			F 🖡	
							-	-								+ -	H		⊧ ₹	
Remark	(S:																			~~~~
	Soil Bo	ring Casi	na			Wate	r Adde	d		Chisell	ina		Rotar	ry Casing		FI	ush De	tails		
From	То	Diame	eter (n	nm)	From	Т	0 /	Amount	From	То	Time (hrs)	From	То	Diameter (mm)	From	То	Туре	•	Returns	(%)

0.00 2.00	2.50 12.50	140 110									0.00	2.50	140		0.00	12.50	Air Mist	100
Н	ole Typ	e		-		Boring /	Drilling	Progres	S	v	Vater L	evels			Waters	trike		Figure No
From	То	Туре	Drill Ri	giype	Date	Hole	Depth	Casing	Depth	Morr	ning	Evening	Struck	Rose T	o Tir	me (min)	Cut Off	03
0.00	2.05	WLS	Dando	Terrier	07-10-14	1.6	60	3.0	00	1.30								Shoot
2.05	5.40	RO	2002/															Sheet
5.40 6.90	6.90 9.50	RC RO	Masser	iza MI6														1 of 2

- 20	1111		25		West	ERS erhill Road	Site Na	ame F	ourfields	, Boddam	n, Peter	head								Contr	act No
		0	r		G	lasgow 64 2QH	Client	١	North Cor	nnect										95!	5001
					Tel: 014 Fax: 014	41 772 2789 41 762 0212	Consu Contra	Itant N	North Cor	nnect										Porek	
Locatio	n:		North	: 84133	3.3876	erregiation.co	East: 412	2094.035	_N351	Ground	d Level	: 65.54	4	Inc	lination:		Scale:	1:50		Durei	
Dates: (07/10/20	14 - 09/1	0/2014	Drill	er(s): JL	CT	Logg	ged By:	BP	Data	Input: E	BP	Che	ecked By: (GA	St	atus: Final			B	H03
		Rock (Coring	1						:	STRAT	A DET	AILS					Leve	l Wa	ter	Backfill
From	To	TCR	SCR 23	RQD	FI	Depth		ak and a			Des	scriptio	n d througho	utroducing	otropath	tov	Legen	d mOD	Leve	Dep	oth Legend
9.50	11.00	48	23	0	NI		- Weak pir weak and closely s	nk and g d in plac paced ro	grey GRA ces recov ough. <i>(co</i>	NITE. Hig rered as co ontinued)	jhly wea oarse a	athered angular	d througho gravel. Fra	ut reducing actures: no	g strength on intact to	o ver	ery + Y + + + + + +	+ + +			
11.00	12.50	61	33	33	5												+ + + + + +	+ + +			
						-	-										++++	+		-	
						⊥12.50	(End of E	Borehole	e)								+	⁻ 53.04	ļ	⊥12.	50
Remark	(S:																				
	Soil Bor	ing Casi	ng		Wat	er Adde	əd			1			Rotar	y Casing			F	lush D	etails		
From	То	Diame	eter (mn	n) Fro	om -	То	Amount	From	То	Time (h	nrs)	From	То	Diamete	r (mm)	Fro	m To	Тур	e	Retu	ırns (%)
ŀ	lole Typ	e				11	Boring /	Drilling	Progres	s	w	/ater L	evels			Wat	erstrike			Fi	gure No
From	То	Туре	Dril	RIG TY	he	Date	Hole I	Depth	Casing	g Depth	Morn	ing	Evening	Struck	Rose T	б	Time (min)	Cu	ut Off		03
			Dan	do Terr	ier 0	8-10-14	12.	.50	2.5	50											Sheet
			Mas	z / senza I	AI6															2	of 2

	1111.		EF	RS hill Road	Site Name	Fourfields,	Boddam, Peterhead							Contrac	ct No
		200	Glas Glas	SON SON	Client	North Conr	ect							OEE	104
			Tel: 0141	772 2789	Consultant	North Conr	ect							9001	101
			Fax: 0141 info@ersrem	762 0212 rediation.com	m Contractor	ERS							E	Borehol	e No
Location	:	North: 842	128.1995		East: 411765.6	687	Ground Level: 55.35		Inclination:		Scale:	1:50		БШ	~ 4
Dates: 08	3/10/2014 - 08/10	/2014 D	riller(s): JL	СТ	Logged By	y: BP	Data Input: BP	Checked	By: GA	Status	: Final			вн	04
	Samples	& Test					STRATA DETAILS					Level	Wat	er E	Backfill
Depth	Sample Type	In-situ	Tests	Depth			Description				Legend	mOD	Level	Depth	Legend
					Dark brown cla	ayey TOPSO	IL				711 71			-	
				- 0.30 -							11.311	55.05		È	
0.30-1	U				Orange brown	sandy slight	y gravelly CLAY with occas	sional pocke	ets of sand and	l gravel.				L	
					Glavel is aligu			nology.				-		F	
														-	1000
											· · · · · ·	4		£	
1.00-2	U			5										Ł	
					-						<u></u>	4		F	+
					-									F	1000
												F		È.	
				L :	-						- 7	1		Ł	
2 00 3					-									- ·	\rightarrow
2.00-5	0				1						· <u>· · · · ·</u>	Á		2	
												-		Ł	
					-							-		-	
				F :	1							1		F	1000
				£ :	1							2		L	
				-3.00-								52.35		L_3.00-	

(End of Borehole)

Remarks:

:	Soil Bor	ing Casir	ng	V	Vater Ac	lded		Chise	ling			Rotar	y Casing			Fl	ush Details	i
From	То	Diame	ter (mm)	From	То	Amour	t From	То	Time (h	nrs)	From	То	Diamete	r (mm)	From	То	Туре	Returns (%)
0.00	3.00	12	8															
Н	lole Typ	е				Borir	ng / Drilling	Progres	s	١	Water L	evels.			Water	strike		Figure No
From	То	Туре	Drill R	ig Type	Dat	e H	ole Depth	Casing	g Depth	Mor	ning	Evening	Struck	Rose 1	Го Т	ïme (min)	Cut Off	04
0.00	1 20	IP	Dando	Torrior	08-10-	14	3.00	31	າດ									_ 0-
1.20	3.00	WLS	2002	remer			0.00	0.										Sheet
																		1 of 1

- 11	111.				-	C/15	Site Name	Fourfield	is, Boddam, P	elemead	(D)					-	Contract No
		-	-	-	Di	al canada a su a	Client	North Co	nnect		-					_	OFFOOd
	1	$\boldsymbol{\Box}$	r	S	THEO	141 772 2788	Consultant	North Co	nniect								955001
· ·		-		2	intigen	145 762 (2112 Self Com	Contractor	ERS								_	Trial Pit No
Location	1		No	orth: 8416	84.8084	1	East: 411752.0	0133	Ground L	evel: 74.0	9	Inc	clination:	Sc	ale 1:	50	TP04
Dates: 07	7/10/20	14 - 07/	10/201	14			Logged B	y: BP	Data Inc	put BP	Che	ecked By:	GA 3	Status: Fir	nal		1
Samp	oles	-	-	Tests		-		_	STI	RATADE	TAILS				-	Leve	Water Backfil
Depth	Туре	Depth	Туре	Re	suts	Depth	Plast herein als	TODO	102	Description	011				agend n	NOD L	evel Depth Lege
0.20	E					FI	Dark brown ca	ayey IOPS	SOIL					1			- 100
0.20	-					0.35	Firm orange b	rown sand	y gravely CL	AY with co	bbles, bouk	ders and p	ockets of cla	avey E		73.74	- 100
0.60	B					E I	sand. Gravel is	s angular ti	o rounded fin	e to coars	e predomini	antly of gra	anite.	E	4		- E - 300
0.60	Ť					E 1								E			E 388
						1 1								E	-		1 100
						1.30										12.79	: : :::::::::::::::::::::::::::::::::::
1.40	в					1 1	Weathered Gil coarse gravel	Excavato	ecovered as p or able to did r	material w	range silty v ith moderate	ery sandy e ease. At	angular fine 1,90m rock	10 -	+ +		1 100
1.40	т					F 1	becomes com	petent and	t is very difficu	ult to extra	ict.				+ +		1 100
	_			-		1.90				_				_	- 1	12.10	1.90 1000
Permatta From 0.00	Hole Ty To 1.90	ре Туре ТР	OL OL	Plant(s) I B 3CX	Used	Dimensio 0.3m x 3.6m	ns.			Water Morning	Levels	Struck	Waterstr Rose To	ike Time	(min)		Figure No 05
														1			Sheet
										1.1							1 of 1

11	1111	_	-	_	Vier	ERS while Road	Site Name	Fourfields, Bodda	m, Peterhead							Contract No
		0		10	Dar O	NECTOR INCOMENTS IN 2011	Client	North Connect							-	955001
		е	1	5	THE DA	41 762 0212	Consultant	North Connect					_		-	Trial Old Ma
Location		-		iorth: 84	1908 2441	enerdielike date	Fast 411747 8	ERS Grou	nd Level 60 9	и	line	ination	Se	ale: 1.5	0	Inal PIL NO
Dates: 0	7/10/20	14 - 07	10/2	014	10002111	_	Logged B	v: BP Dat	a Input BP	Che	cked By:	GA S	Status: Fir	al in	~	TP05
Samp	oles			Tests		-			STRATA DE	TAILS				L	evel W	ater Backfill
Depth	Туре	Depth	Type	F	lesuits	Depth			Descripti	n			Le	gend m	ADD Let	vel Depth Legend
						1 1	Dark brown cla	ivey TOPSOIL					-			1 1000
						0.30	Firm orange b	rown sandy slightly	gravely CLAY	with low co	bble and t	oulder conte	ent,	- 6	0.64	1 1000
0.50	в					1 1	and pockets of	I clayey sand. Grav	el is angular ti	o rounded fil	ne to coars	e of mixed	E	-		1 10000
0.50	T					F	ne non gy a non a	and min					F	-		F - 4888
0.80	T					EH							E	-		
						E							E	0		1 1000
1.00						1 1							E			1 1000
1.50	VPP(5 kPa	66k	·s)		1 1							E	극		1 1000
	1.1					1.80	Soft to firm ora	inge brown sandy g	ravelly CLAY	with low to n	nedium co	bble and box	Ider _	- = 6	9.14	1 1000
2.00	в					FI	content, and p mixed lithology	ockets of clayey sa	nd. Gravel is a	angular to ro	unded fine	to coarse o	' E	4		F 7888
2.00	τ					F	interes in constal						E			1 1000
						F							E			F 3000
						F							E	2		
	1		-			2.90							-		8,04	2.90 1.0000
							(End of Tria	(PR)								
	_															
-																
1	lole Ty	pe		Dian	in the second	Dimensio	ons		Water	Levels		Waterstr	ike		7	Figure No
From	To	Туре		mantis	Used (.5m x 3.6m			Morning	Evening	Struck	Rose To	Time (min)	<u></u>	06
0.00	2.90	TP	J	CB 3CX												Sheet
																1 01 1
																1011

					Site Name	Fourfields, Boddam	Pelemead				Contract No.
	- 19	-		Sistopotgov Distopotgov	Client	North Connect					Contract No
			rC	064 2011	Consultant	North Connect				_	955001
			2	Fac 5141 782 0212	Contractor	ERS					Trial Pit No
Location	n:		North: 8422	19.115	East 411823.	4068 Groun	Level: 50.63	Inclination:	Scale	1:50	TDOC
Dates: (07/10/20	014 - 07/10	2014		Logged B	y: BP Data	Input BP	Checked By: GA Stat	us: Final		1 1 P 06
Sam	nples		Tests			4	STRATA DETAILS			Level	Water Backfill
Depth	Туре	e Depth Ty	pe Res	ults Depth			Description		Legend	SmADD L	evel Depth Legens
				E	Dark brown d	ayey TOPSOIL			123 4		1 1000
				E	1				2 14	1.1	1 1000
0.40	E			F 0.60	1				121	50.03	1 1000
				E.	Firm brown sil	ghtly sandy slightly gr tockets of clavey san	avelly CLAY with ion 1. Gravel is angular	w to medium cobble and bould to rounded fine to coarse of	e		1 1000
1.00				E .	mixed litholog	у.				1 1	1
1.00	Ť			F	1					4 1	1 1000
				F	1					1 1	- F - 1888
				E	1						- F - 1888
				F	1				100	1 1	- E - 1888
200	VPP	(ASkPa)		-2.00	Still bernen elle	while exectly allocate on	web CLAY with too	to marken on bile and hourds	==	48.63	- F - HXXX
2 20	B	(your a)		F	content, and p	pockets of clayey san	1. Gravel is angular	to rounded fine to coarse of	- E	1 1	- F - 1888
2.20	Ť			E.	mixed litholog	у.					- F., 1888

11	111			Vite D	ERG data fice:	Site Name	Fourfie	elds, Boddam, I	Peterhead							Contract No
	~ <i>U</i>		rc	•	004 2021	Consultant	North C	Connect					_			955001
					141 772 2769 2141 782 0212	Contractor	ERS	Construction					-			Trial Pit No
Location		-	North: 8	342095 230	2	East 411734.	1303	Ground	evel 53.9	6	Inc	dination:	S	cale 1	50	
Dates: 0	7/10/20	4-07/1	0/2014			Logged B	y: BP	Data In	put BP	Che	cked By:	GA S	Status: Fi	inal		1 1 1 1 1 1 1
Sam	ples		Test	ls				51	RATA DE	TAILS					Level	Water Backfil
Depth	Туре	Depth T	ype	Results	Depth				Description	20			L	egend	mAOD L	evel Depth Leger
0.10	E				En 20.	Dark brown d	ayey TOP	PSOIL			-			22.2	63.70	E 300
					0.20	Firm brown sa	andy sligh	htly gravelly CL	AY with low	w to medium	n cobble ar	nd bouider			00.70	1 100
0.40	B				1 1	mixed litholog	y-	a caayey sand.	Graver is a	siguiar to ro	unded the	e to coarse o	Ē			1 100
0.10	1				1 1								H			1 1000
					1 4	1.000							Ē			1 400
					1,10	Firm brown m	ottled gre	ey sandy slight	y gravelly	CLAY with v	with low to	medium cobi	ble		52.00	1 100
1.20	VPP(12 KP-30			1 1	and boulder of max	ontent, ar	and pockets of a	clayey san	d. Gravel is	angular to	rounded fine	e to	-		1 1000
1.50	в				1 1	Contactor on Friday	nor na const	31					E			- 100
1.50	1				FI								-			- 100
					F. H								5			- F -1888
					2.10	Light brown sl	ightly gra	avelly fine to co	arse SANI	D. Gravel is	angular to	rounded fine	e to	e	01.86	E 188
					E 1	coarse of max	ed litholog	gy.						d.		E 188
2.50	B				Eam									÷	E4.70	- 1 m
200					2.10		1.1								01:20	270 4.22
Ferriet									Webs			Minister	Bet.			
Erom	To	Time	Plant	t(s) Used	0.8m x 2.6m	11.5			Momino	Evening	Struck	Rose To	Time	(min)	-	Figure No
0.00	2.70	TP	JCB 3C	x					wanted	r.vernið	SOUCK	HUSE IC	ime	(om)	-	- 08
100		199														Sheet
																1 of 1

Coordinates at centre	e of test		
Easting	412078.85		
Northing	841262.11		
Veather	Bright breezy with	n occaisonal showe	ers
Depth of probes (B)	0.2	cm	
		Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	16	100.53	107.15
2	7.9	99.27	100.98
3	5.9	111.21	112.07
4		0.00	0.00
5	7.6	238.76	239.43
6		0.00	0.00
Wenners Arrangeme 1+(2xA /(V(A2+4B2))	ent '4 x π xA x R) -(A /(√(A2+B2)))		

Easting	412036.05		
orthing	841266.96		
/eather	Bright breezy with	n occaisonal showe	ers
epth of probes (B)	0.2	cm	
Spacing (A)	Resistance (R)	Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	26	163.36	174.13
2	17.8	223.68	227.54
3	16.2	305.36	307.72
4	14.6	366.94	368.54
5	13	408.41	409.55
6	11.9	448.62	449.49
Venners Arrangeme	ent '4 x π xA x R) -(A /(v(A2+B2)))		
IT(ZXX / (V(XZT4DZ))) -(R / (V(R2+D2)))		

Coordinates at centre	e of test		
asting	411995.34		
lorthing	841269.58		
/eather	Bright breezy with	n occaisonal showe	ers
onth of probas (D)	0.2	~~	
epth of probes (B)	0.2		
Spacing (A)	Resistance (R)	Soil Re	esistivity ρ
	0	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	27	169.65	180.82
2	21.1	265.15	269.72
3	15.6	294.05	296.32
4	12.5	314.16	315.53
5	10.9	342.43	343.39
6	9.5	358.14	358.84
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	nt '4 x π xA x R -(A /(√(A2+B2)))		

Loordinates at centre Easting	411952.43				
lorthing	841273.23				
/eather	Bright breezy with	n occaisonal showe	ers		
epth of probes (B)	0.2	cm			
Spacing (A)	Resistance (R)	Soil Re	esistivity $ ho$		
		10>A/B<20	Full formulae		
m	Ω	Ωm	Ωm		
1	28	175.93	187.52		
2	15.7	197.29	200.69		
3	10.6	199.81	201.35		
4	7.8	196.04	196.89		
5	6.6	207.35	207.92		
6	5.5	207.35	207.75		
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	nt '4 x π xA x R -(A /(√(A2+B2)))				

Soil Resistivity Survey

est Number 5				
Coordinates at	centre of test			
Easting	412077.54			
Northing	841290.63			
Weather	Bright breezy with	h occaisonal show	ers	
Depth of prob	es (B) 0.2	cm		
Spacing (A) Resistance (R)	Soil Re	esistivity $ ho$	
		10>A/B<20	Full formulae	
m	Ω	Ωm	Ωm	
1	19.4	121.89	129.92	
2	13.8	173.42	176.40	
3	14.3	269.55	271.63	
4	9.8	246.30	247.37	
5	9.4	295.31	296.13	
6	9.2	346.83	347.51	
Wenners Arra 1+(2xA /(v(A2·	ngement '4 x π xA x R +4B2))) -(A /(ν(A2+B2)))			
Comments				

າber 6			
Coordinates at centre	e of test		
Easting	412035.58		
Northing	841295.06		
Weather	Bright breezy witl	h occaisonal showe	ers
Depth of probes (B)	0.2	cm	
Spacing (A)	Resistance (R)	Soil Re	esistivity $ ho$
		10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	20.7	130.06	138.63
2	17.1	214.88	218.59
3	15.6	294.05	296.32
4	13.9	349.35	350.87
5	13.3	417.83	419.00
6	12.6	475.01	475.93
Wenners Arrangeme 1+(2xA /(v(A2+4B2))) ts	nt '4 x π xA x R -(A /(v(A2+B2)))		

er 7			
Coordinates at centr Easting Northing	re of test 411995.25 841298.06		
Weather	Bright breezy wit	h occaisonal showe	ers
Depth of probes (B)	0.2	cm	
Spacing (A)	Resistance (R)	Soil Re 10>A/B<20	esistivity $ ho$ Full formulae
m	Ω	Ωm	Ωm
1	16.9	106.19	113.18
2	14.4	180.96	184.07
3	13.8	260.12	262.13
4	13.3	334.27	335.72
5	11.5	361.28	362.29
6	10.6	399.61	400.39
Wenners Arrangem 1+(2xA /(V(A2+4B2)	ent '4 x π xA x R)) -(A /(V(A2+B2)))		

Coordinates at centre of testEasting411953.90Northing841301.89						
Easting 411953.90 Northing 841301.89				e of test	Coordinates at centre	
Northing 841301.89				411953.90	Easting	
				841301.89	Northing	
Weather Bright breezy with occaisonal showers	-	rs	n occaisonal show	Bright breezy wit	Weather	
Depth of probes (B) 0.2 cm	_		cm	0.2	Depth of probes (B)	
Spacing (A) Resistance (R) Soil Resistivity ρ		sistivity $ ho$	Soil Re	Resistance (R)	Spacing (A)	
10>A/B<20 Full formulae		Full formulae	10>A/B<20	Resistance (R)		
<u> </u>		Ωm	Ωm	Ω	m	
1 22 138.23 147.34		147.34	138.23	22	1	
2 14.4 180.96 184.07		184.07	180.96	14.4	2	
3 11.4 214.88 216.54		216.54	214.88	11.4	3	
4 9.8 246.30 247.37		247.37	246.30	9.8	4	
5 8.4 263.89 264.63		264.63	263.89	8.4	5	
6 7.3 275.20 275.74		275.74	275.20	7.3	6	
Wenners Arrangement				nt '4 x π xA x R -(A /(v(A2+B2)))	Wenners Arrangeme 1+(2xA /(v(A2+4B2)))	
mments					5	mments

Coordinates at centre	e of test		
asting	411952.67		
lorthing	841322.47		
/eather	Bright breezy with	n occaisonal showe	ers
epth of probes (B)	0.2	cm	
		Soil Re	sistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	17.8	111.84	119.21
2	9.9	124.41	126.55
3	6.7	126.29	127.27
4	5.5	138.23	138.83
5	4.6	144.51	144.92
6	3.8	143.26	143.53
	Test 21		
Venners Arrangeme	nt '4 x π xA x R -(Α /(√(A2+B2)))		
, ,, ,, <u>,</u> , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	、,、、, =,,,		

Coordinates at centre	e of test		
asting	411994.11		
ortning	841324.24		
/eather	Bright breezy with	n occaisonal showe	ers
epth of probes (B)	0.2	cm	
Spacing (A)	Resistance (R)	Soil Re	sistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	24	150.80	160.73
2	17.8	223.68	227.54
3	15.1	284.63	286.83
4	13.2	331.75	333.20
5	10.8	339.29	340.24
6	9.8	369.45	370.17
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	ent '4 x π xA x R) -(A /(V(A2+B2)))		

asting Jorthing	412033.02			
orthing				
/eather	Bright breezy with	n occaisonal showe	ers	
epth of probes (B)	0.2	cm		
		Soil Re	sistivity ρ	
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae	
m	Ω	Ωm	Ωm	
1	31	194.78	207.61	
2	23	289.03	294.01	
3	20.2	380.76	383.70	
4	18.7	469.98	472.03	
5	16	502.65	504.06	
6	13.8	520.25	521.26	
Wenners Arrangeme	nt '4 x π xA x R			
L+(2xA /(√(A2+4B2)))	-(A /(V(A2+B2)))			

asting Jorthing	412075.58 841317.62			
/eather	Bright breezy with	n occaisonal showe	ers	
epth of probes (B)	0.2	ст		
		Soil Re	esistivity $ ho$	
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae	
m	Ω	Ωm	Ωm	
1	81	508.94	542.47	
2	121	1520.53	1546.73	
3	18.2	343.06	345.71	
4	17.3	434.80	436.69	
5	15.5	486.95	488.31	
6	16.3	614.50	615.69	
Wenners Arrangeme	nt '4 x π xA x R I -(A /(√(A2+B2)))			
())				

Coordinates at centre	e of test		
asting	412070.83 8/1337 93		
Vortning			
Weather	Bright breezy with	n occaisonal showe	ers
Depth of probes (B)	0.2	cm	
		Soil Re	esistivity ρ
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	12.2	76.65	81.71
2	7.3	91.73	93.32
3	5.7	107.44	108.27
4	4.9	123.15	123.69
5	5.9	185.35	185.87
6	E D	106.04	106.42
6	5.2	196.04	196.42
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	nt '4 x π xA x R -(A /(V(A2+B2)))		

er 14			
Coordinates at centre	e of test		
Easting	412030.42		
Northing	841342.58		
Weather	Bright breezy wit	h occaisonal showe	ers
Depth of probes (B)	0.2	cm	
$C_{\text{rec}}(A)$	Desistence (D)	Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	19	119.38	127.25
2	15.2	191.01	194.30
3	13.3	250.70	252.64
4	13.5	339.29	340.77
5	12	376.99	378.04
6	12	452.39	453.27
Wenners Arrangeme	nt '4 x π xA x R) -(A /(√(A2+B2)))		

Coordinates at centre	of test		
Easting	411992.67		
Northing	841340.12		
Veather	Bright breezy with	n occaisonal showe	ers
Depth of probes (B)	0.2	cm	
		Soil Re	esistivity ρ
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	17.9	112.47	119.88
2	15.3	192.27	195.58
3	15.6	294.05	296.32
4	11.3	284.00	285.24
5	10.2	320.44	321.34
6	9.6	361.91	362.61
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	nt '4 x π xA x R -(A /(v(A2+B2)))		

)er 16			
Coordinates at centre	e of test		
Easting	411949.81		
Northing	841346.84		
Weather	Bright breezy with	n occaisonal showe	ers
Depth of probes (B)	0.2	cm	
Spacing (A)	Posistance (P)	Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	19.5	122.52	130.59
2	12.3	154.57	157.23
3	10.7	201.69	203.25
4	9.6	241.27	242.33
5	8.1	254.47	255.18
6	7.6	286.51	287.07
Wenners Arrangeme 1+(2xA /(v(A2+4B2)))	nt '4 x π xA x R -(A /(√(A2+B2)))		

Coordinates at centre of testEasting411948.26Northing841375.03	
Easting 411948.26 Northing 841375.03	
Northing 041575.05	
Weather Bright breezy with occaisonal showers	
Depth of probes (B) 0.2 cm	
Spacing (A) Resistance (R) Soil Resistivity ρ	
m O Om Om	
1 20.8 130.69 139.30	
2 17.9 224.94 228.81	
3 11.8 222.42 224.14	
4 10.3 258.87 260.00	
5 8.4 263.89 264.63	
6 8.7 327.98 328.62	
Wenners Arrangement '4 x π xA x R 1+(2xA /(v(A2+4B2))) -(A /(v(A2+B2)))	
Comments	

າber 18				
Coordinates at centre	e of test			
Easting	411989.14			
Northing	841375.82			
Weather	Bright breezy with	n occaisonal showe	ers	
Depth of probes (B)	0.2	cm		
	D i i i i i i i i i i i	Soil Re	esistivity $ ho$	
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae	
m	Ω	Ωm	Ωm	
1	21.6	135.72	144.66	
2	11.5	144.51	147.00	
3	10.1	190.38	191.85	
	10.1	150.55	191.05	
Λ	<u>۹ د</u>	216 14	217 00	
4	8.0	210.14	217.00	
5	7.9	248.19	248.88	
6	7.2	271.43	271.96	
Ű	7.12	271110	_/	
Wenners Arrangeme	nt			
	'4 x π xA x R			
1+(2xA /(V(A2+4B2)))	-(A /(√(A2+B2)))			

Easting	412025.57		
orthing	841380.76		
/eather	Bright breezy with	n occaisonal showe	ers
epth of probes (B)	0.2	cm	
Spacing (A)	Resistance (R)	Soil Re	sistivity ρ
	0	10>A/B<20	Full formulae
111	52	\$2111	\$2111
1	19.7	123.78	131.93
2	12.3	154.57	157.23
3	10.4	196.04	197.55
4	10.2	256.35	257.47
5	9.9	311.02	311.89
6	9.7	365.68	366.39
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	nt '4 x π xA x R -(A /(√(A2+B2)))		

Easting	412066.53		
orthing	841385.16		
/eather	Bright breezy with	h occaisonal showe	ers
epth of probes (B)	0.2	cm	
		Soil Re	esistivity ρ
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	21.8	136.97	146.00
2	19.6	246.30	250.54
3	23	433.54	436.89
4	18.8	472.50	474.55
5	19.1	600.04	601.72
6	16.4	618.27	619.47
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	nt '4 x π xA x R -(A /(v(A2+B2)))		

nber 21			
Coordinates at centre	e of test		
Easting	411889.81		
Northing	841278.33		•
Weather	Bright breezy with	1 occaisonal showe	ers
Depth of probes (B)	0.2	cm	
Spacing (A)	Resistance (R)	Soil Re	esistivity $ ho$
		10>A/B<20	Full formulae
111	52	22111	2201
1	170	100 70	115 06
1	17.5	100.70	115.00
2	94	118.12	120.16
-			120.10
3	6.4	120.64	121.57
_			
4	5.2	130.69	131.26
5	4.6	144.51	144.92
6	4.2	150 21	159 64
σ	4.2	138.34	158.04
Wenners Arrangeme 1+(2xA /(V(A2+4B2)))	nt '4 x π xA x R -(A /(V(A2+B2)))		
ts			

Coordinates at centre of test Easting 411891.29 Northing 841312.20 Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ More that the second of	mber 22			
Easting Northing 411891.29 841312.20 Weather Bright breezy with occaisonal showers Depth of probes (B) $0.2 cm$ Spacing (A) Resistance (R) $10>A/B<20$ Soil Resistivity ρ Mean Ω Ω Ω M Ω Ω Ω 1 17.5 109.96 117.20 2 11.7 147.03 149.56 3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53	Coordinates at centre	e of test		
Northing 841312.20 Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ 10>A/B<20 Full formulae m Ω Ωm Ωm 1 17.5 109.96 117.20 2 11.7 147.03 149.56 3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53 Wenners Arrangement '4 x π x A x R '1+(2xA /(V(A2+4B2))) - (A /(V(A2+B2))))	Easting	411891.29		
Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ 10>A/B<20	Northing	841312.20		
Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ 10>A/B<20	Weather	Bright breezy with	1 occaisonal showe	ers
Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ 10>A/B<20				
Spacing (A) Resistance (R) Soil Resistivity ρ m Ω Ωm Ωm 1 17.5 109.96 117.20 2 11.7 147.03 149.56 3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53	Depth of probes (B)	0.2	cm	
Spacing (r) Itestitice (r) 10>A/B<20 Full formulae m Ω Ω m Ω m 1 17.5 109.96 117.20 2 11.7 147.03 149.56 3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53	Spacing (A)	Resistance (R)	Soil Re	esistivity $ ho$
m Ω Ωm Ωm 1 17.5 109.96 117.20 2 11.7 147.03 149.56 3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53		Resistance (Ny	10>A/B<20	Full formulae
1 17.5 109.96 117.20 2 11.7 147.03 149.56 3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53	m	Ω	Ωm	Ωm
2 11.7 147.03 149.56 3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53	1	17.5	109.96	117.20
3 9.1 171.53 172.86 4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53	2	11.7	147.03	149.56
4 7.1 178.44 179.22 5 5.6 175.93 176.42 6 4.7 177.19 177.53	3	9.1	171.53	172.86
5 5.6 175.93 176.42 6 4.7 177.19 177.53 Wenners Arrangement '4 x π xA x R 1+(2xA /(V(A2+4B2))) -(A /(V(A2+B2))) 	4	7.1	178.44	179.22
6 4.7 177.19 177.53 Wenners Arrangement '4 × π ×A × R '4 × π ×A × R 1+(2×A /(V(A2+4B2))) -(A /(V(A2+B2)))	5	5.6	175.93	176.42
Wenners Arrangement '4 x π xA x R 1+(2xA /(V(A2+4B2))) -(A /(V(A2+B2)))	6	4.7	177.19	177.53
S	Wenners Arrangeme 1+(2xA /(V(A2+4B2))) nts	nt '4 x π xA x R -(A /(V(A2+B2)))		

Easting 411891.22 Northing 841333.03 Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity /> Meather Ω Ω m Mark Ω Ω m 1 28 175.93 187.52 2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	Coordinates at centre	e of test		
Northing 841333.03 Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ Image: model of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ Image: model of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ 1 28 175.93 187.52 2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	Easting	411891.22		
Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ 1 28 175.93 187.52 2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	Northing	841333.03		
Depth of probes (B)0.2 cmSpacing (A)Resistance (R)Soil Resistivity ρ n Ω Ω m128175.93128175.93216201.0620204.53311.9224.3126.04448.8221.1757.6238.7666.2233.73Venners Arrangement $\frac{1}{2 \times \pi \times A \times R}$ 1+(2xA / (V(A2+4B2))) - (A / (V(A2+B2)))	Weather	Bright breezy with	n occaisonal show	ers
Spacing (A) Resistance (R) Soil Resistivity ρ m Ω Ωm Ωm 1 28 175.93 187.52 2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	Depth of probes (B)	0.2	cm	
Spacing (A) Resistance (K) 10>A/B<20 Full formulae m Ω Ω m Ω m 1 28 175.93 187.52 2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19			Soil Re	esistivity $ ho$
m Ω Ωm Ωm 1 28 175.93 187.52 2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
1 28 175.93 187.52 2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	m	Ω	Ωm	Ωm
2 16 201.06 204.53 3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	1	28	175.93	187.52
3 11.9 224.31 226.04 4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	2	16	201.06	204.53
4 8.8 221.17 222.13 5 7.6 238.76 239.43 6 6.2 233.73 234.19	3	11.9	224.31	226.04
5 7.6 238.76 239.43 6 6.2 233.73 234.19 Wenners Arrangement '4 x π xA x R 1+(2xA /(V(A2+4B2))) -(A /(V(A2+B2)))	4	8.8	221.17	222.13
6 6.2 233.73 234.19 Wenners Arrangement ^{'4} x π xA x R 1+(2xA /(V(A2+4B2))) -(A /(V(A2+B2)))	5	7.6	238.76	239.43
Wenners Arrangement '4 x π xA x R 1+(2xA /(√(A2+4B2))) -(A /(√(A2+B2)))	6	6.2	233.73	234.19
	Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	ent '4 x π xA x R -(A /(v(A2+B2)))		

Coordinates at centre	e of test		
asting	411893.45		
orthing	841356.08		
/eather	Bright breezy with	n occaisonal showe	ers
epth of probes (B)	0.2	cm	
Spacing (A)	Posistanco (P)	Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	25	157.08	167.43
2	14.4	180.96	184.07
3	11.3	213.00	214.65
4	9.4	236.25	237.28
5	8.2	257.61	258.33
6	7.2	271.43	271.96
Wenners Arrangeme	nt '4 x π xA x R		
L+(2xA /(v(A2+4B2)))	-(A /(V(A2+B2)))		

Coordinates at centre of test			
Easting	411898.63		
Northing	841397.13		
Veather	Bright breezy with	h occaisonal showe	ers
epth of probes (B)	0.2	cm	
Spacing (A)	Desistance (D)	Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	22	138.23	147.34
2	12.4	155.82	158.51
3	9.8	184.73	186.15
4	8	201.06	201.94
5	7.1	223.05	223.68
6	6.3	237.50	237.97
Wenners Arrangeme 1+(2xA /(√(A2+4B2)))	nt '4 x π xA x R -(A /(√(A2+B2)))		

Jer 26			
Coordinates at centre of test			
Easting	412061.79		
Northing	841420.69		
Weather	Bright breezy with	n occaisonal showe	ers
Depth of probes (B)	0.2	cm	
Spacing (Λ)	Resistance (R)	Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	14.8	92.99	99.12
2	8.9	111.84	113.77
3	7	131.95	132.97
4	6.4	160.85	161.55
5	5.5	172.79	173.27
6	4.7	177.19	177.53
Wenners Arrangeme	ent '4 x π xA x R - (A /(v(A2+B2)))		

er 27			
Coordinates at centre of test			
Easting	412021.79		
Northing	841420.85		
Weather	Bright breezy wit	h occaisonal showe	ers
Depth of probes (B)	0.2	cm	
	· · · · · · · · ·	Soil Re	α
Spacing (A)	Resistance (R)	10~4/8~20	
m	0	102A/ 0~20 Om	
	52	52111	22111
1	44	276.46	294.68
2	14.7	184.73	187.91
3	9.8	184.73	186.15
4	7.1	178.44	179.22
5	5.4	169.65	170.12
6	5.1	192.27	192.64
Wenners Arrangeme 1+(2xA /(v(A2+4B2)))	nt '4 x π xA x R -(A /(v(A2+B2)))		

Cordinates at centre of test String 841420.15 Wather Bight breezy with occaisonal showers Dept of probes (B) 0.2 cm Spacing (A) Resistance (R) Soli Resistivity P 1 26 163.36 174.13 1 26 163.36 174.13 1 26 163.36 174.13 1 26 163.36 174.13 1 26 163.36 174.13 1 26 163.36 174.13 2 11.8 148.28 150.84 3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97	umber 28				
Easting 411985.40 Northing 841420.15 Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity $/$ 1 26 163.36 174.13 2 11.8 148.28 150.84 3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97	Coordinates at centr	e of test			
Northing 841420.15 Weather Bright breezy with occaisonal showers Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) 10>A/B<20	Easting	411985.40			
Bight beesy with occaisonal showers Dept of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity />Di>A/B<20 Full formulae M Q A13 AB4.23 A14.33 1 26 A63.36 A74.13 2 A11.8 A84.28 A50.84 3 8.6 A62.11 A63.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 3 327.50 237.97	Northing	841420.15			
Depth of probes (B) 0.2 cm Spacing (A) Resistance (R) Soil Resistivity ρ n Ω Ω m n Ω Ω m 1 26 163.36 174.13 1 26 163.36 174.13 2 11.8 148.28 150.84 3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 237.50 237.97	Weather	Bright breezy with	n occaisonal show	ers	
Depth of probes (B) 0.2 cm 					
Spacing (A) Resistance (R) Soil Resistivity ρ m Ω Ωm Ωm 1 26 163.36 174.13 2 11.8 148.28 150.84 3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97	Depth of probes (B)	0.2	ст		
Instance (x) 10>A/B<20 Full formulae m Ω Ω m Ω m 1 26 163.36 174.13 2 11.8 148.28 150.84 3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97	Spacing (A)	Resistance (R)	Soil Re	esistivity $ ho$	
m Ω Ωm Ωm 1 26 163.36 174.13 2 11.8 148.28 150.84 3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97			10>A/B<20	Full formulae	
1 26 163.36 174.13 2 11.8 148.28 150.84 3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97	m	Ω	Ωm	Ωm	
211.8148.28150.8438.6162.11163.3648.4211.12212.0456.6207.35207.9266.3237.50237.97	1	26	163.36	174.13	
3 8.6 162.11 163.36 4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97	2	11.8	148.28	150.84	
4 8.4 211.12 212.04 5 6.6 207.35 207.92 6 6.3 237.50 237.97	3	8.6	162.11	163.36	
5 6.6 207.35 207.92 6 6.3 237.50 237.97 Wenners Arrangement '4 x π xA x R 1+(2xA /(V(A2+4B2))) -(A /(V(A2+B2)))	4	8.4	211.12	212.04	
6 6.3 237.50 237.97 Wenners Arrangement '4 x π xA x R '4 x π xA x R 1+(2xA /(V(A2+4B2))) -(A /(V(A2+B2)))	5	6.6	207.35	207.92	
Wenners Arrangement '4 x π xA x R 1+(2xA /(V(A2+4B2))) -(A /(V(A2+B2)))	6	6.3	237.50	237.97	
	Wenners Arrangeme 1+(2xA /(v(A2+4B2))	ent '4 x π xA x R) -(A /(V(A2+B2)))			
ients	ents				

Easting Northing Weather	8 of test 411950.18 841415.39		
Weather	841415.39		
Weather	-		
Weather			
	Bright breezy with	n occaisonal showe	ers
Depth of probes (B)	0.2	cm	
Spacing (A)	Resistance (R)	Soil Re	esistivity $ ho$
Spacing (A)	Resistance (R)	10>A/B<20	Full formulae
m	Ω	Ωm	Ωm
1	65	408.41	435.32
2	14.2	178.44	181.52
3	11.2	211.12	212.75
4	8.9	223.68	224.66
5	78	245 04	245.73
5	7.0	213.01	243173
6	7.6	286.51	287.07
wenners Arrangeme	πι '4 x π xA x R		
1+(2xA /(v(A2+4B2)))	-(A /(V(A2+B2)))		

ERS

Westerhill Road Bishopbriggs Glasgow G64 2QH

Tel:	0141 772 2789
Fax:	0141 762 0212
Web:	www.ersremediation.com

FALLING HEAD TEST INTERPRETATION (BH02)

Contract Name:	Fourfields Boddam
Site:	Fourfields Boddam
Date:	
Instrument Type:	Manual Dipmeter
Start of test (t1):	
End of test:	

Borehole No.	BH02	Depth:	2.55	mbgl
Resting Water Depth	2.55			
Head Added	2.55			

Standpipe diameter (d)	0.128	m
Casing diameter (D)	0.128	m
Length of test section (L)	0.55	m
Cross sectional area (A)	1.29E-02	m²
Intake factor (F)	1.79	(obtained from BS5930:1999, Section 4, Figure 6 Scenario D)
Time lag (T)	74	S
Hydraulic conductivity (K)	9.69E-05	m/s
	3.49E-01	m/hr
	8.38E+00	m/day
Comments		

Contract No.:	955001
Engineer:	BP
Weather:	Rain

ERS

Westerhill Road Bishopbriggs Glasgow G64 2QH

Tel:	0141 772 2789
Fax:	0141 762 0212
Web:	www.ersremediation.com

FALLING HEAD TEST INTERPRETATION (BH03)

Contract Name:	Fourfields Boddam
Site:	Fourfields Boddam
Date:	
Instrument Type:	Manual Dipmeter
Start of test (t1):	
End of test:	

Borehole No.	BH03	Depth:	2.05	mbgl
Resting Water Depth	2.05			
Head Added	2.05			

-		
Standpipe diameter (d)	0.128	m
Casing diameter (D)	0.128	m
Length of test section (L)	0.55	m
Cross sectional area (A)	1.29E-02	m²
Intake factor (F)	1.44	(obtained from BS5930:1999, Section 4, Figure 6, Scenario D)
Time lag (T)	23500	S
Hydraulic conductivity (K)	3.82E-07	m/s
	1.37E-03	m/hr
	3.30E-02	m/day
Comments		

Contract No.:	955001
Engineer:	BP
Weather:	Heavy rain

BOREHOLE	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
BH01	U	0.00-0.85	Mottled brown slightly gravelly sandy CLAY with root fibres. Gravel is fine to coarse.
BH01	U	1.00-1.82	Mottled brown sandy gravelly CLAY with cobbles. Gravel is fine to coarse.
BH02	U	0.00-0.46 0.46-0.97	Dark brown sandy CLAY with root fibres. Reddish brown gravelly sandy CLAY. Gravel is fine to coarse.
BH02	U	1.00-2.00	Reddish brown sandy gravelly CLAY with cobbles and bands of fine to coarse sand. Gravel is fine to coarse.
BH03	U	0.00-0.90	Mottled brown slightly gravelly sandy CLAY with root fibres. Gravel is fine to coarse.
BH03	U	1.00-1.60	Mottled brown very sandy very gravelly CLAY with bands of fine to coarse sand. Gravel is fine to coarse.
BH04	U	1.00-1.93	Reddish brown very sandy silty slightly gravelly CLAY with bands of silty sand. Gravel is fine to medium.

SUMMARY OF SAMPLE DESCRIPTIONS

TRIAL PIT SAMPLE DEPTH (m)		DEPTH (m)	SAMPLE DESCRIPTION		
TP04	в	1.40	Red / brown clayey fine to coarse SAND and GRAVEL.		
TP05	в	0.80	Dark reddish brown sandy gravelly CLAY with cobbles. Gravel is fine to coarse.		
TP06	в	1.00	Red / brown sandy gravelly CLAY with black staining. Gravel is fine to coarse.		
TP07	в	1.50	Reddish brown sandy gravelly CLAY. Gravel is fine to coarse.		

ERS LAND REGENERATION FOURFIELDS, BODDAM

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)
BH04	U	(m) 1.00-1.50	(%) 24

Tested in accordance with BS 1377: Part 2: 1990: Clause 3

SUMMARY OF MOISTURE CONTENT TEST RESULTS

TRIAL PIT	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)
TP04	в	1.40	9.7
TP05	в	0.80	13
TP06	в	1.00	25
TP07	в	1.50	14

Symbol	Borehole	Sample	Depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing 0.425mm Sieve	Remarks
	BH01	U	1.40	-	29	16	13	49	Clay with low plasticity
•	BH02	U	1.60	-	28	17	11	46	Clay with low plasticity
	BH03	U	1.00	-	30	18	12	33	Clay with low plasticity
•									
\diamond									
Δ									
0									
×									
Ж									

All samples were tested in accordance with BS 1377 : Part 2 : 1990 Clause 4.3, 5.3 and 5.4. All samples were washed on a 0.425mm test sieve prior to test.

SUMMARY OF ATTERBERG LIMITS TEST RESULTS

Symbol	Trial Pit	Sample	Depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing 0.425mm Sieve	Remarks
	TP04	В	1.40	9.7	23	Non Plastic	Non Plastic	30	
٠	TP05	в	0.80	13	30	18	12	56	Clay with low plasticity
•	TP06	в	1.00	25	34	17	17	83	Clay with low plasticity
•	TP07	в	1.50	14	33	16	17	65	Clay with low plasticity
\diamond		2		11		1 - 1			
Δ					1.00				
0									
×									
*									

All samples were tested in accordance with BS 1377 : Part 2 : 1990 Clause 4.3, 5.3 and 5.4. All samples were washed on a 0.425mm test sieve prior to test.

SUMMARY OF ATTERBERG LIMITS TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	PARTICLE DENSITY (Mg/m³)
BH01	U	1.30	2.62
BH02	U	1.50	2.63
BH03	U	1.00	2.60
BH04	U	1.50	2.56

Tested in accordance with BS 1377: Part 2: 1990: Clause 8.2 (Gasjar method)

SUMMARY OF PARTICLE DENSITY TEST RESULTS

TRIAL PIT	SAMPLE	DEPTH (m)	PARTICLE DENSITY (Mg/m³)
TP04	в	1.40	2.61
TP05	в	0.80	2.59
TP06	в	1.00	2.57
TP07	в	1.50	2.58

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 10 of 36

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 11 of 36

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 12 of 36

7 Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS - BS 1377 : Part 2 : 1990 : CLAUSE 9.2

7 Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

7 Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

7 Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Tested in accordance with BS 1377 : Part 4 : 1990

DETERMINATION OF MOISTURE CONTENT / DRY DENSITY RELATIONSHIP BY COMPACTION

Tested in accordance with BS 1377 : Part 4 : 1990

DETERMINATION OF MOISTURE CONTENT / DRY DENSITY RELATIONSHIP BY COMPACTION

Tested in accordance with BS 1377 : Part 4 : 1990

DETERMINATION OF MOISTURE CONTENT / DRY DENSITY RELATIONSHIP BY COMPACTION

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	BULK DENSITY (Mg/m ³)	DRY DENSITY (Mg/m ³)
BH04	U	1.70	27	2.00	1.58

Tested in accordance with BS1377 Part 2 : 1990 Bulk Density : Linear Measurement

SUMMARY OF MOISTURE CONTENT AND DENSITY TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	% MATERIAL GREATER THAN 20mm	MOISTURE CONTENT (%)	MOISTURE CONDITION VALUE (MCV)
BH01	U	0.00-0.85	3	14.2	7.3
BH02	U	0.00-0.97	3	26.1	0.0
BH03	U	0.00-0.90	3	12.2	11.0

Method of interpretation for all test results - steepest line Tested in accordance with BS 1377 : Part 4 : 1990 : Clause 5.4

SUMMARY OF MOISTURE CONDITION VALUE (MCV) TEST RESULTS TESTED AT AS RECEIVED MOISTURE CONTENT

BOREHOLE	SAMPLE	DEPTH (m)	% MATERIAL GREATER THAN 20mm	MOISTURE CONTENT (%)	M.C.V.
BH01	U	0.00-0.85	3	11.0 12.7 14.2 15.8 17.5	11.9 9.4 7.3 5.1 2.7

*Material Passing 20mm sieve, separate samples used for each point Tested in accordance with BS 1377: Part 4 : 1990: Clause 5.5

SUMMARY OF MOISTURE CONDITION TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	% MATERIAL GREATER THAN 20mm	MOISTURE CONTENT (%)	M.C.V.
BH02	U	0.00-0.97	3	10.5 11.8 13.7 14.4 15.6	13.3 11.4 8.3 7.0 5.2

*Material Passing 20mm sieve, separate samples used for each point Tested in accordance with BS 1377: Part 4 : 1990: Clause 5.5

SUMMARY OF MOISTURE CONDITION TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	% MATERIAL GREATER THAN 20mm	MOISTURE CONTENT (%)	M.C.V.
BH03	U	0.00-0.90	3	10.2 11.2 13.5 14.1 16.9	13.8 12.5 9.4 8.3 4.9

*Material Passing 20mm sieve, separate samples used for each point Tested in accordance with BS 1377: Part 4 : 1990: Clause 5.5

SUMMARY OF MOISTURE CONDITION TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	BULK DENSITY (Mg/m ³)	DRY DENSITY (Mg/m ³)
BH01	U	1.50	15	2.23	1.94
SAMPLE DIAMETER (mm)	SAMPLE HEIGHT (mm)	PARTICLE DENSITY (Mg/m ³)	INITIAL VOIDS RATIO	DEGREE OF SATURATION (%)	SWELLING PRESSURE (kPa)
74.91	20.11	2.62	0.354	100	N/A

The value detailed for Particle Density is a measured value

PRESSURE	SAMPLE HEIGHT	VOIDS RATIO	m _v	Cv	C _{sec}
(kPa)	(mm)		(m²/MN)	(m²/Year)	
50	19.65	0.323	0.45	1.12	-
100	19.43	0.308	0.23	3.30	-
200	19.07	0.284	0.18	4.32	-
400	18.10	0.218	0.26	6.19	-
100	18.14	0.221	0.01		

m_v indicates values of coefficient of volume compressibility, c_v indicates values of coefficient of consolidation

Tested in a temperature controlled room at 20 +/- 2°C Tested in accordance with BS 1377: Part 5: 1990: Clause 3 ONE DIMENSIONAL CONSOLIDATION TEST RESULTS

Sample was extruded directly from an undisturbed sample and vertical axis was maintained during testing

Tested in a temperature controlled room at 20 +/- 2°C Tested in accordance with BS 1377: Part 5: 1990: Clause 3 **ONE DIMENSIONAL CONSOLIDATION TEST RESULTS**

Page 26 of 36

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	BULK DENSITY (Mg/m ³)	DRY DENSITY (Mg/m ³)
BH02	U	1.70	14	2.26	1.98
SAMPLE DIAMETER (mm)	SAMPLE HEIGHT (mm)	PARTICLE DENSITY (Mg/m ³)	INITIAL VOIDS RATIO	DEGREE OF SATURATION (%)	SWELLING PRESSURE (kPa)
74.98	20.06	2.63	0.330	100	N/A

The value detailed for Particle Density is a measured value

PRESSURE (kPa)	SAMPLE HEIGHT (mm)	VOIDS RATIO	m _v (m²/MN)	C _v (m²/Year)	C _{sec}
50 100 200	19.73 19.53 19.25	0.309 0.295 0.276	0.33 0.21 0.14	0.69 1.02 6.73	- -
400 100	19.00 19.04	0.260 0.263	0.07 0.01	3.34	-

m_v indicates values of coefficient of volume compressibility, c_v indicates values of coefficient of consolidation

Tested in a temperature controlled room at 20 +/- 2°C Tested in accordance with BS 1377: Part 5: 1990: Clause 3 ONE DIMENSIONAL CONSOLIDATION TEST RESULTS

Sample was extruded directly from an undisturbed sample and vertical axis was maintained during testing

Tested in a temperature controlled room at 20 +/- 2°C Tested in accordance with BS 1377: Part 5: 1990: Clause 3 **ONE DIMENSIONAL CONSOLIDATION TEST RESULTS**

Page 28 of 36

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	BULK DENSITY (Mg/m ³)	DRY DENSITY (Mg/m ³)
BH03	U	1.30	11	2.25	2.02
SAMPLE DIAMETER (mm)	SAMPLE HEIGHT (mm)	PARTICLE DENSITY (Mg/m ³)	INITIAL VOIDS RATIO	DEGREE OF SATURATION (%)	SWELLING PRESSURE (kPa)
75.02	20.20	2.6	0.285	100	N/A

The value detailed for Particle Density is a measured value

PRESSURE	SAMPLE HEIGHT	VOIDS RATIO	m _v	Cv	C _{sec}
(kPa)	(mm)		(m²/MN)	(m²/Year)	
50	19.98	0.271	0.22	0.66	-
100	19.82	0.261	0.16	4.07	-
200	19.59	0.246	0.12	8.22	-
400	19.31	0.229	0.07	8.01	-
100	19.37	0.233	0.01		

m_v indicates values of coefficient of volume compressibility, c_v indicates values of coefficient of consolidation

Tested in a temperature controlled room at 20 +/- 2°C Tested in accordance with BS 1377: Part 5: 1990: Clause 3 ONE DIMENSIONAL CONSOLIDATION TEST RESULTS

Sample was extruded directly from an undisturbed sample and vertical axis was maintained during testing

Tested in a temperature controlled room at 20 +/- 2°C Tested in accordance with BS 1377: Part 5: 1990: Clause 3 **ONE DIMENSIONAL CONSOLIDATION TEST RESULTS**

Page 30 of 36

BOREHOLE	SAMPLE	DEPTH (m)	COHESION (kPa)	FRICTION ANGLE (°)
BH01	U	1.60	27.8	10.9
BH02	U	1.80	16.3	11.4
BH03	U	1.40	29.1	6.8

Tested in accordance with BS1377: Part 7: 1990: Clause 9

SUMMARY OF FRICTION ANGLE & COHESION

---- Undisturbed sample, taken directly from the sample tube and retaining axial orientation

Failure Conditions						
Cell pressure	(kPa)	20	40	80		
Membrane correction	(kPa)	0.6	0.7	0.8		
Strain at failure	(%)	13.0	17	20		
Failure Type		Plastic	Plastic	Plastic		
Corrected deviator stress	(kPa)	76	86	105		
Undrained shear strength	(kPa)	38	43	52		

Initial Conditions					Borehole		
Sample length	194.3	mm	Rate of strain	2.0	%/min	DOIEIIUIE	BIIUI
Sample diameter	97.1	mm	Bulk Density	2.16	Mg/m ³	Sample	U
Membrane type	Latex		Dry Density	1.90	Mg/m ³	Donth (m)	1 60
Membrane thickness	0.2	mm	Moisture Content	14	%	Deptil (III)	1.00

DETERMINATION OF MULTI STAGE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION Tested in accordance with BS 1377 : Part 7 : 9.0 : 1990

---- Undisturbed sample, taken directly from the sample tube and retaining axial orientation

Failure Conditions						
Cell pressure	(kPa)	20	40	80		
Membrane correction	(kPa)	0.4	0.6	0.7		
Strain at failure	(%)	7.5	13	17		
Failure Type		Intermediate	Intermediate	Intermediate		
Corrected deviator stress	(kPa)	48	61	78		
Undrained shear strength	(kPa)	24	30	39		

Initial Conditions					Poroholo		
Sample length	204.3	mm	Rate of strain	2.0	%/min	DUIEIIUIE	DI IUZ
Sample diameter	99.5	mm	Bulk Density	2.12	Mg/m ³	Sample	U
Membrane type	Latex		Dry Density	1.88	Mg/m ³	Dopth (m)	1 90
Membrane thickness	0.2	mm	Moisture Content	13	%	Deptil (III)	1.00

DETERMINATION OF MULTI STAGE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION Tested in accordance with BS 1377 : Part 7 : 9.0 : 1990

---- Undisturbed sample, taken directly from the sample tube and retaining axial orientation

Failure Conditions						
Cell pressure	(kPa)	20	40	80		
Membrane correction	(kPa)	0.6	0.7	0.8		
Strain at failure	(%)	13.0	16	20		
Failure Type		Plastic	Plastic	Plastic		
Corrected deviator stress	(kPa)	70	76	86		
Undrained shear strength	(kPa)	35	38	43		

Initial Conditions					Borehole		
Sample length	176.9	mm	Rate of strain	2.0	%/min	DOIEIIUIE	DI 103
Sample diameter	94.3	mm	Bulk Density	2.19	Mg/m ³	Sample	U
Membrane type	Latex		Dry Density	1.95	Mg/m ³	Dopth (m)	1 40
Membrane thickness	0.2	mm	Moisture Content	12	%	Deptil (III)	1.40

DETERMINATION OF MULTI STAGE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION Tested in accordance with BS 1377 : Part 7 : 9.0 : 1990

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	BULK DENSITY (Mg/m ³)	DRY DENSITY (Mg/m ³)
BH01		(m) 5.00	(%) 0.9	(Mg/m ³) 2.51	(Mg/m ³) 2.49

Tested in accordance with "ISRM Suggested Methods"

SUMMARY OF MOISTURE CONTENT AND DENSITY TEST RESULTS

BOREHOLE CORE RUNmmDEPTHsample diameterSAMPLE DIAMETERmmSAMPLE HEIGHTmmWATER CONTENT%TEST CONDITION%RATE OF LOADINGkN/sTEST DURATIONmin.secDATE OF TESTINGLOAD FRAME USEDLOAD FRAME USEDLOAD DIRECTION WITH RESPECT TO LITHOLOGYFAILURE LOADkNUNCONFINED COMPRESSIVE STRENGTHMPa	BH01 - 5.00 72.60 141.94 0.9 As Received 0.3 5.53 15-Nov-14 2000kN Unknown 105.6 25.5	SAMPLE FAILURE SHAPES
---	--	-----------------------

BOREHOLE CORE RUN DEPTH SAMPLE DIAMETER	mm	SAMPLE FAILURE SHAPES
WATER CONTENT TEST CONDITION RATE OF LOADING TEST DURATION DATE OF TESTING	kN/s min.sec	
LOAD FRAME USED LOAD DIRECTION WITH RESPECT TO LITHOLOGY FAILURE LOAD UNCONFINED COMPRESSIVE STRENGTH	kN MPa	External Internal

Tested in accordance with ASTM D7012 - 10

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

Tel 0141 772 2789 Fa) 0141 762 0212 We www.ersremediation.com

Site Name: Fourfields, Boddam Contract No.: 955001

BH01

EXPLORATORY HOLE PHOTOGRAPHS

BH03

Tel 0141 772 2789 Fa) 0141 762 0212 We <u>www.ersremediation.com</u>

TRIAL PIT PHOTOGRAPHS

TP02

ERS

Tel 0141 772 2789 Fa) 0141 762 0212 We <u>www.ersremediation.com</u>

Site Name: Fourfields, Boddam Contract No.: 950001

TP03

TRIAL PIT PHOTOGRAPHS

TP04

Site Name: Fourfields, Boddam Contract No.: 950001

Tel 0141 772 2789 Fa) 0141 762 0212 We <u>www.ersremediation.com</u>

ERS Westerhill Road Bishopbriggs Glasgow G64 2QH

TRIAL PIT PHOTOGRAPHS

ers

Tel 0141 772 2789 Fa) 0141 762 0212 We <u>www.ersremediation.com</u>

Site Name: Fourfields, Boddam Contract No.: 950001

TP04

TRIAL PIT PHOTOGRAPHS

Tel 0141 772 2789 Fa) 0141 762 0212 We <u>www.ersremediation.com</u>

Site Name: Fourfields, Boddam Contract No.: 950001

TP05

TRIAL PIT PHOTOGRAPHS

ERS Westerhill Road Bishopbriggs Glasgow G64 2QH

Tel 0141 772 2789 Fa) 0141 762 0212 We <u>www.ersremediation.com</u>

Site Name: Fourfields, Boddam Contract No.: 950001

TP05

TRIAL PIT PHOTOGRAPHS

Appendix E – Tier 1 Human Health Risk Assessment Table

Tier 1 Human Health Risk Assessment Table

Contaminants of Concern (COC)	GAC Source	LOD	Units	No. Samples Analysed	No. Non Detects	Maximum Concentration	GAC Commercial	Number of Samples
Amonio		0	rea er /l.c.er			7	0.40	Exceeding GAC
Arsenic		2	mg/kg	6	0	1	640	0
		1	mg/kg	6	6	<1	190	0
Chromium (III)	LQM	1	mg/kg	6	0	43	8,600	0
Chromium VI	LQM	1	mg/kg	6	6	<1	33	0
Copper	LQM	1	mg/kg	6	0	23	68,000	0
Lead	SGV	3	mg/kg	6	0	15	750	0
Mercury, inorganic	LQM	1	mg/kg	6	6	<1	1,100	0
Nickel	LQM	1	mg/kg	6	0	35	980	0
Selenium	LQM	3	mg/kg	6	6	<3	12,000	0
SO4(Total)	NR	0.01	%	6	0	0.12	-	-
SO4 (2:1)	NR	10	mg/l	6	1	18	-	-
Zinc	LQM	1	mg/kg	6	0	71	730,000	0
Total Cyanide	NC	1	mg/kg	6	6	<1	-	-
Phenol	LQM	1	mg/kg	6	6	<1	760	0
рН	NR		mg/kg	6	0	8.3	-	-
TPH Banded								
TPH(C8-10)	LQM	1	mg/kg	6	6	<1	2,000 (78) ^{sol} *	0
TPH(C10-12)	LQM	1	mg/kg	6	6	<1	2,000 (78) ^{sol} *	0
TPH(C12-16)	LQM	1	mg/kg	6	6	<1	2,000 (78) ^{sol} *	0
TPH(C16-21)	LQM	1	mg/kg	6	6	<1	2,000 (78) ^{sol} *	0
TPH(C35-40)	LQM	1	mg/kg	6	6	<1	2,000 (78) ^{sol} *	0
Speciated PAH USEPA16								
Naphthalene	LQM	0.01	mg/kg	6	6	<0.01	190 (76.4) ^{sol}	0
Acenaphthylene	LQM	0.01	mg/kg	6	6	<0.01	83,000 (86.1) ^{sol}	0
Acenaphthene	LQM	0.01	mg/kg	6	6	<0.01	84,000 (57) ^{sol}	0
Fluorene	LQM	0.01	mg/kg	6	6	<0.01	63,000 (30.9) ^{sol}	0
Phenanthrene	LQM	0.01	mg/kg	6	6	<0.01	22,000	0
Anthracene	LQM	0.01	mg/kg	6	6	<0.01	520,000	0

Contaminants of Concern (COC)	GAC Source	LOD	Units	No. Samples Analysed	No. Non Detects	Maximum Concentration	GAC Commercial	Number of Samples Exceeding GAC
Fluoranthene	LQM	0.01	mg/kg	6	5	0.02	23,000	0
Pyrene	LQM	0.01	mg/kg	6	5	0.02	54,000	0
Benzo(a)anthracene	LQM	0.01	mg/kg	6	5	0.01	170	0
Chrysene	LQM	0.01	mg/kg	6	6	<0.01	350	0
Benzo(b)fluoranthene	LQM	0.01	mg/kg	6	5	0.01	44	0
Benzo(k)fluoranthene	LQM	0.01	mg/kg	6	6	<0.01	1,200	0
Benzo(a)pyrene	LQM	0.01	mg/kg	6	6	<0.01	35	0
Indeno(1,2,3,c,d)pyrene	LQM	0.01	mg/kg	6	6	<0.01	500	0
Dibenzo(a,h)anthracene	LQM	0.01	mg/kg	6	6	<0.01	3.5	0
Benzo(g,h,i)perylene	LQM	0.01	mg/kg	6	6	<0.01	3,900	0
VOC USEPA 624								
Benzene	LQM	0.001	mg/kg	6	6	<0.001	27,000	0
Ethylbenzene	LQM	0.001	mg/kg	6	6	<0.001	5,700 ^{vap} (518)	0
Toluene	LQM	0.001	mg/kg	6	6	<0.001	56,000 ^{vap} (869)	0
m Xylene	LQM	0.001	mg/kg	6	6	<0.001	6,200 ^{vap} (625)	0
o Xylene	LQM	0.001	mg/kg	6	6	<0.001	6,600 ^{sol} (478)	0
p Xylene	LQM	0.001	mg/kg	0	0	<0.001	5,900 ^{sol} (576)	0
All remaining VOC were below the limits of detection.								
Organophosphorous Pesticides (OPP)								
Azinphos methyl	NC	0.01	mg/kg	6	6	<0.01	-	-
Diazinon	NC	0.01	mg/kg	6	6	<0.01	-	-
Dichlorvos	LQM	0.01	mg/kg	6	6	<0.01	140	0
Dimethoate	NC	0.01	mg/kg	6	6	<0.01	-	-
Fenitrothion	ERS	0.01	mg/kg	6	6	<0.01	9,375	0
Malathion	ERS	0.01	mg/kg	6	6	<0.01	36,580	0
Mevinphos	NC	0.01	mg/kg	6	6	<0.01	-	-
Parathion	NC	0.01	mg/kg	6	6	<0.01	-	-
Pirimiphos methyl	NC	0.01	mg/kg	6	6	<0.01	-	-
Organochlorine Pesticides (OCP)								
Aldrin	LQM	0.01	mg/kg	6	6	<0.01	120	0
Chlordane	NC	0.01	mg/kg	6	6	<0.01	-	-

ers

Contaminants of Concern (COC)	GAC Source	LOD	Units	No. Samples Analysed	No. Non Detects	Maximum Concentration	GAC Commercial	Number of Samples Exceeding GAC
DDD	NC	0.01	mg/kg	6	6	<0.01	-	-
DDE	NC	0.01	mg/kg	6	6	<0.01	-	-
DDT	ERS	0.01	mg/kg	6	6	<0.01	1,042	0
Dieldrin	LQM	0.01	mg/kg	6	6	<0.01	170	0
Endosulphan	LQM	0.01	mg/kg	6	6	<0.01	5,600 (0.003) ^{vap} **	0
Endrin	NC	0.01	mg/kg	6	6	<0.01	-	-
Heptachlor	NC	0.01	mg/kg	6	6	<0.01	-	-
Heptachlor epoxide	NC	0.01	mg/kg	6	6	<0.01	-	-
Hexachlorobenzene	NC	0.01	mg/kg	6	6	<0.01	-	-
Hexachlorocyclohexane	LQM	0.01	mg/kg	6	6	<0.01	65***	0

NC – Not calculated. Toxicity data and/or chemical data could not be sourced to enable a GAC to be derived. As Cyanide concentration below LOD, no further assessment undertaken.

NR – Not relevant. According to CLR 8, humans are not a receptor for this COC. ^{sol} - GAC presented exceeds solubility based saturation limit (in brackets).

^{vap} - GAC presented exceeds vapour based saturation limit (in brackets).

*Compared all TPH results to lowest GAC for TPHCWG fractions.

**Compared to lowest GAC of two endosulphan isomers.

***Compared to lowest GAC of three HCH isomers.